Math Problem Statement

Find max. Value of 3+sinx

Solution

To find the maximum value of the expression 3+sinx3 + \sin x:

Step-by-step solution:

  1. Understand the range of sinx\sin x: The sine function (sinx\sin x) has a range of values between 1-1 and 11. That is: 1sinx1-1 \leq \sin x \leq 1

  2. Add 3 to the range: Adding 3 to each value of sinx\sin x shifts the range up by 3 units: 313+sinx3+13 - 1 \leq 3 + \sin x \leq 3 + 1 23+sinx42 \leq 3 + \sin x \leq 4

  3. Maximum value: The maximum value of 3+sinx3 + \sin x is: 4\boxed{4}

  4. When does this occur? The maximum value of 3+sinx3 + \sin x occurs when sinx=1\sin x = 1. This happens at: x=π2+2nπ,nZ(any integer multiple of the sine period).x = \frac{\pi}{2} + 2n\pi, \quad n \in \mathbb{Z} \quad (\text{any integer multiple of the sine period}).

Let me know if you'd like further clarifications!


Related questions:

  1. What is the minimum value of 3+sinx3 + \sin x?
  2. What is the range of 3+2sinx3 + 2\sin x?
  3. How does the period of sinx\sin x affect the maximum and minimum points of 3+sinx3 + \sin x?
  4. Can we generalize the result for a+bsinxa + b\sin x? What would its maximum be?
  5. What are the key trigonometric transformations that affect the sine function's range?

Tip:

Always think about the amplitude and vertical shift of the trigonometric function when analyzing expressions like a+bsinxa + b\sin x.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sine Function
Range of Functions
Max/Min Value of Functions

Formulas

sin x ∈ [-1, 1]
3 + sin x ∈ [2, 4]

Theorems

Range of sine function
Transformation of functions (vertical shift)

Suitable Grade Level

Grades 9-11