Math Problem Statement

реши и объясни

Найти ОМП для неизвестного параметра θ по независимой повторной выборке X1, X2,..., Xn из распределения с плотностью f_X(x) = (1 / √π) * exp{ - (x - θ)^2 }.

Solution

The problem asks to find the Maximum Likelihood Estimator (MLE) for the unknown parameter θ\theta given a set of independent and identically distributed (i.i.d.) observations X1,X2,,XnX_1, X_2, \dots, X_n from a probability distribution with the probability density function (PDF):

fX(x)=1πexp{(xθ)2}.f_X(x) = \frac{1}{\sqrt{\pi}} \exp \left\{ - (x - \theta)^2 \right\}.

Step 1: Likelihood Function

The likelihood function L(θ)L(\theta) for the sample X1,X2,,XnX_1, X_2, \dots, X_n is the product of the individual densities, as the observations are independent. Therefore, the likelihood is:

L(θ)=i=1nfX(xi)=i=1n1πexp{(xiθ)2}.L(\theta) = \prod_{i=1}^{n} f_X(x_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{\pi}} \exp \left\{ -(x_i - \theta)^2 \right\}.

We can simplify this:

L(θ)=(1π)nexp{i=1n(xiθ)2}.L(\theta) = \left( \frac{1}{\sqrt{\pi}} \right)^n \exp \left\{ - \sum_{i=1}^{n} (x_i - \theta)^2 \right\}.

Step 2: Log-Likelihood Function

To find the MLE, we typically maximize the log-likelihood function because it is easier to work with sums rather than products. Taking the natural logarithm of the likelihood function gives the log-likelihood (θ)\ell(\theta):

(θ)=lnL(θ)=nln(1π)i=1n(xiθ)2.\ell(\theta) = \ln L(\theta) = n \ln \left( \frac{1}{\sqrt{\pi}} \right) - \sum_{i=1}^{n} (x_i - \theta)^2.

This simplifies further to:

(θ)=nln(π)i=1n(xiθ)2.\ell(\theta) = - n \ln(\sqrt{\pi}) - \sum_{i=1}^{n} (x_i - \theta)^2.

Step 3: Maximizing the Log-Likelihood

To maximize the log-likelihood, we take the derivative with respect to θ\theta and set it equal to zero:

ddθ(θ)=ddθ(i=1n(xiθ)2)=2i=1n(xiθ)=0.\frac{d}{d\theta} \ell(\theta) = \frac{d}{d\theta} \left( - \sum_{i=1}^{n} (x_i - \theta)^2 \right) = 2 \sum_{i=1}^{n} (x_i - \theta) = 0.

This simplifies to:

i=1n(xiθ)=0.\sum_{i=1}^{n} (x_i - \theta) = 0.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Maximum Likelihood Estimation (MLE)
Probability Density Function (PDF)
Optimization

Formulas

f_X(x) = (1 / √π) * exp{ - (x - θ)^2 }
L(θ) = ∏ (1 / √π) * exp{ - (x_i - θ)^2 }
Log-Likelihood: ℓ(θ) = - n ln(√π) - ∑ (x_i - θ)^2

Theorems

Maximum Likelihood Estimation (MLE)

Suitable Grade Level

Undergraduate (Advanced Statistics)