Math Problem Statement
La función demanda de un determinado producto, donde el precio es en dólares para una demanda unidades de dicho producto, es: q = 10,000e^{-0.02p}. Calcule el precio para el cual se obtiene el ingreso máximo por la venta del producto.
Solution
The problem involves finding the price at which the revenue is maximized. We are given the demand function for a product:
where represents the demand and is the price in dollars.
Step-by-step approach to solve for maximum revenue:
-
Revenue Function: The revenue is the product of the price and the quantity demanded : So, the revenue function becomes:
-
**Max
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Revenue Maximization
Differentiation
Exponential Functions
Formulas
q = 10,000e^{-0.02p}
Revenue R(p) = p * q = p * 10,000e^{-0.02p}
Derivative of R(p) to find the critical points
Theorems
First Derivative Test for Maximum Revenue
Suitable Grade Level
Undergraduate (Calculus)