Math Problem Statement

La función demanda de un determinado producto, donde el precio es en dólares para una demanda unidades de dicho producto, es: q = 10,000e^{-0.02p}. Calcule el precio para el cual se obtiene el ingreso máximo por la venta del producto.

Solution

The problem involves finding the price pp at which the revenue is maximized. We are given the demand function for a product:

q=10,000e0.02pq = 10,000 e^{-0.02p} where qq represents the demand and pp is the price in dollars.

Step-by-step approach to solve for maximum revenue:

  1. Revenue Function: The revenue R(p)R(p) is the product of the price pp and the quantity demanded qq: R(p)=pq=p10,000e0.02pR(p) = p \cdot q = p \cdot 10,000 e^{-0.02p} So, the revenue function becomes: R(p)=10,000pe0.02pR(p) = 10,000 p e^{-0.02p}

  2. **Max

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Revenue Maximization
Differentiation
Exponential Functions

Formulas

q = 10,000e^{-0.02p}
Revenue R(p) = p * q = p * 10,000e^{-0.02p}
Derivative of R(p) to find the critical points

Theorems

First Derivative Test for Maximum Revenue

Suitable Grade Level

Undergraduate (Calculus)