Math Problem Statement

Find the maximum value of f(x,y)=x3y9 for x,y≥0 on the unit circle.

Solution

To find the maximum value of the function f(x,y)=x3y9f(x, y) = x^3 y^9 for x,y0x, y \geq 0 on the unit circle, we start with the constraint given by the unit circle:

x2+y2=1.x^2 + y^2 = 1.

Step 1: Use the constraint

We can express yy in terms of xx using the constraint:

y=1x2.y = \sqrt{1 - x^2}.

Step 2: Substitute into the function

Now, substitute yy into the function:

f(x)=x3(1x2)9=x3(1x2)92.f(x) = x^3 (\sqrt{1 - x^2})^9 = x^3 (1 - x^2)^{\frac{9}{2}}.

Step 3: Find the derivative

To find the critical points, we differentiate f(x)f(x):

  1. Using the product rule:

Let u=x3u = x^3 and v=(1x2)92v = (1 - x^2)^{\frac{9}{2}}.

The derivative f(x)f'(x) is given by:

f(x)=uv+uv.f'(x) = u'v + uv'.

Calculating uu' and vv':

u=3x2,u' = 3x^2, v=92(1x2)72(2x)=9x(1x2)72.v' = \frac{9}{2} (1 - x^2)^{\frac{7}{2}} (-2x) = -9x(1 - x^2)^{\frac{7}{2}}.

Thus,

f(x)=3x2(1x2)929x4(1x2)72.f'(x) = 3x^2 (1 - x^2)^{\frac{9}{2}} - 9x^4 (1 - x^2)^{\frac{7}{2}}.

Step 4: Set the derivative to zero

Setting f(x)=0f'(x) = 0:

3x2(1x2)72(13x2)=0.3x^2 (1 - x^2)^{\frac{7}{2}} (1 - 3x^2) = 0.

This gives us two cases:

  1. x2=0x^2 = 0 (implying x=0x = 0).
  2. 13x2=01 - 3x^2 = 0 (implying x2=13x^2 = \frac{1}{3} or x=13x = \frac{1}{\sqrt{3}}).

Step 5: Calculate yy

For x=13x = \frac{1}{\sqrt{3}}:

y=1(13)2=113=23.y = \sqrt{1 - \left( \frac{1}{\sqrt{3}} \right)^2} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}}.

Step 6: Evaluate f(x,y)f(x, y)

Now evaluate ff at the critical points:

  1. At (0,1)(0, 1):

f(0,1)=0319=0.f(0, 1) = 0^3 \cdot 1^9 = 0.

  1. At (13,23)\left( \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}} \right):

f(13,23)=(13)3(23)9.f\left( \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}} \right) = \left( \frac{1}{\sqrt{3}} \right)^3 \left( \sqrt{\frac{2}{3}} \right)^9.

Calculating:

=133(24342)=162813.= \frac{1}{3\sqrt{3}} \cdot \left( \frac{2^4}{3^4} \cdot \sqrt{2} \right) = \frac{16\sqrt{2}}{81\sqrt{3}}.

Step 7: Check boundary points

Check (1,0)(1, 0) and (0,1)(0, 1):

  • f(1,0)=1309=0f(1, 0) = 1^3 \cdot 0^9 = 0.
  • f(0,1)=0f(0, 1) = 0.

Conclusion

The maximum occurs at (13,23)\left( \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}} \right):

f(13,23)=162813.f\left( \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}} \right) = \frac{16\sqrt{2}}{81\sqrt{3}}.

Thus, the maximum value of f(x,y)f(x, y) on the unit circle is:

162813.\boxed{\frac{16\sqrt{2}}{81\sqrt{3}}}.

If you have any questions or need further details, let me know! Here are some related questions you might consider:

  1. How does the method of Lagrange multipliers apply to this problem?
  2. What are the geometric interpretations of the critical points found?
  3. How does this function behave as xx and yy approach the unit circle's boundary?
  4. Can we find the maximum value using a different method?
  5. How would the maximum change if we altered the constraint?

Tip: Always check boundary points in optimization problems with constraints!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Optimization
Multivariable Functions

Formulas

f(x, y) = x^3 y^9
x^2 + y^2 = 1
Product Rule for derivatives

Theorems

Critical Points Theorem
Boundary Value Theorem

Suitable Grade Level

Grades 11-12