Math Problem Statement
Donna De Paul is raising money for the homeless. She discovers that each church group requires 2 hours of letter writing and 1 hour of follow-up, while for each labor union she needs 2 hours of letter writing and 3 hours of follow-up. Donna can raise $150 from each church group and $200 from each union local, and she has a maximum of 16 hours of letter writing and a maximum of 14 hours of follow-up available per month. Determine the most profitable mixture of groups she should contact and the most money she can raise in a month. Question content area bottom Part 1 Let x 1 be the number of church groups, and let x 2 be the number of labor unions. What is the objective function? zequals 150x 1plus 200x 2 (Do not include the $ symbol in your answers.) Part 2 She should contact enter your response here church group(s) and enter your response here labor union(s), to obtain a maximum of $ enter your response here in donations.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Programming
Optimization
Inequalities
Formulas
Objective Function: z = 150x1 + 200x2
Constraints: 2x1 + 2x2 ≤ 16, x1 + 3x2 ≤ 14, x1 ≥ 0, x2 ≥ 0
Theorems
Simplex Method for Linear Programming
Feasible Region in Optimization
Suitable Grade Level
Grades 10-12
Related Recommendation
Linear Programming: Maximize Donna's Fundraising Efforts with Church Groups and Labor Unions
Maximizing Fundraising with Linear Programming for Donna De Paul
Optimization Problem: Maximizing Donations Using Linear Programming
Maximizing Donations Using Linear Programming: Church Groups and Labor Unions
Maximizing Fundraising Using Linear Programming: Church Groups and Labor Unions