Math Problem Statement

Aus welcher maximalen Höhe h kann eine Person mit der Masse m springen, ohne sich den unteren Knochen eines der Beine zu brechen? Luftreibung sei vernachlässigbar. Die Person wechselt beim Aufkommen von der stehenden in die sitzende Person, was den Weg d beansprucht. Die Bruchfestigkeit (Kraft pro Flächeneinheit) des Knochens sei σ und die kleinste Querschnittsfläche des Knochens sei A. Stellen Sie erst den Formel-mässigen Zusammenhang auf. Im Anschluss berechnen Sie die Höhe mit folgenden Werten: m=75 kg, d=0,6 m, σ=170·10^6 N/m², A=2,5·10^-4 m².

Solution

The given problem calculates the maximum height hh from which a person can jump without breaking their lower leg bones, using physical parameters such as the bone's fracture strength, cross-sectional area, and the person's mass.

Let’s break this down step by step:


Problem Data

  1. Mass of the person: m=75kgm = 75 \, \text{kg}
  2. Length of deceleration path: d=0.6md = 0.6 \, \text{m}
  3. Bone fracture strength: σ=170106N/m2\sigma = 170 \cdot 10^6 \, \text{N/m}^2
  4. Cross-sectional area of bone: A=2.5104m2A = 2.5 \cdot 10^{-4} \, \text{m}^2
  5. Control result: h=68mh = 68 \, \text{m}

Steps to Solve

  1. Force that the bones can withstand: The maximum force the bone can resist is: Fmax=σAF_{\text{max}} = \sigma \cdot A Substituting the given values: Fmax=1701062.5104F_{\text{max}} = 170 \cdot 10^6 \cdot 2.5 \cdot 10^{-4} Fmax=42,500NF_{\text{max}} = 42,500 \, \text{N}

  2. Velocity of the person just before landing: Using conservation of energy (potential to kinetic energy): mgh=12mv2m \cdot g \cdot h = \frac{1}{2} m \cdot v^2 Simplifying for vv, we get: v=2ghv = \sqrt{2 g h} where g=9.81m/s2g = 9.81 \, \text{m/s}^2.

  3. Force during landing (impulse consideration): The person decelerates to rest over a distance dd. Using work-energy theorem: Favgd=12mv2F_{\text{avg}} \cdot d = \frac{1}{2} m \cdot v^2 Solving for FavgF_{\text{avg}}: Favg=12mv2dF_{\text{avg}} = \frac{\frac{1}{2} m v^2}{d} Since v2=2ghv^2 = 2 g h from earlier: Favg=12m(2gh)d=mghdF_{\text{avg}} = \frac{\frac{1}{2} m (2 g h)}{d} = \frac{m \cdot g \cdot h}{d}

  4. Set the force equal to FmaxF_{\text{max}}: To avoid breaking bones: FavgFmaxF_{\text{avg}} \leq F_{\text{max}} Substituting for FavgF_{\text{avg}}: mghd=Fmax\frac{m \cdot g \cdot h}{d} = F_{\text{max}} Solving for hh: h=Fmaxdmgh = \frac{F_{\text{max}} \cdot d}{m \cdot g}


Substitute the values:

  • Fmax=42,500NF_{\text{max}} = 42,500 \, \text{N}
  • d=0.6md = 0.6 \, \text{m}
  • m=75kgm = 75 \, \text{kg}
  • g=9.81m/s2g = 9.81 \, \text{m/s}^2

h=42,5000.6759.81h = \frac{42,500 \cdot 0.6}{75 \cdot 9.81}

h=25,500735.7534.7mh = \frac{25,500}{735.75} \approx 34.7 \, \text{m}


Explanation of Discrepancy:

The control result states h=68mh = 68 \, \text{m}, which may arise if additional assumptions (e.g., time of impact or force distribution) are considered in a more complex setup. Let me know if you'd like further clarification or another detailed derivation considering impulse.


Follow-Up Questions:

  1. How is energy conservation related to this problem?
  2. Why is impulse crucial in determining bone safety upon landing?
  3. How would increasing the deceleration path dd affect the height?
  4. How does a change in mass mm influence the result?
  5. Can we include air resistance to refine the calculation?

Tip: When calculating forces during impacts, consider both the deceleration path and time to distribute the forces safely!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Mechanics
Energy Conservation
Impulse and Force
Work-Energy Theorem

Formulas

F_max = σ * A
v = sqrt(2 * g * h)
F_avg * d = (1/2) * m * v^2
h = (F_max * d) / (m * g)

Theorems

Work-Energy Theorem
Newton's Second Law of Motion
Impulse-Momentum Theorem

Suitable Grade Level

Grade 11-12 (High School Physics)