Math Problem Statement

Given A = [[1, 3], [-2, 5], [2, 4]], B = [[2, -1], [4, 1], [-1, -5]], find 5A - 5B.

Solution

The problem asks to compute 5A5B5A - 5B where AA and BB are given matrices:

A=[132524],B=[214115]A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \\ 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -1 \\ 4 & 1 \\ -1 & -5 \end{bmatrix}

Step 1: Multiply matrix AA and BB by 5

First, we'll compute 5A5A and 5B5B by multiplying each element of AA and BB by 5.

5A=5×[132524]=[51510251020]5A = 5 \times \begin{bmatrix} 1 & 3 \\ -2 & 5 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ -10 & 25 \\ 10 & 20 \end{bmatrix} 5B=5×[214115]=[105205525]5B = 5 \times \begin{bmatrix} 2 & -1 \\ 4 & 1 \\ -1 & -5 \end{bmatrix} = \begin{bmatrix} 10 & -5 \\ 20 & 5 \\ -5 & -25 \end{bmatrix}

Step 2: Subtract 5B5B from 5A5A

Now, subtract 5B5B from 5A5A:

5A5B=[51510251020][105205525]5A - 5B = \begin{bmatrix} 5 & 15 \\ -10 & 25 \\ 10 & 20 \end{bmatrix} - \begin{bmatrix} 10 & -5 \\ 20 & 5 \\ -5 & -25 \end{bmatrix}

This results in:

5A5B=[51015(5)102025510(5)20(25)]=[52030201545]5A - 5B = \begin{bmatrix} 5 - 10 & 15 - (-5) \\ -10 - 20 & 25 - 5 \\ 10 - (-5) & 20 - (-25) \end{bmatrix} = \begin{bmatrix} -5 & 20 \\ -30 & 20 \\ 15 & 45 \end{bmatrix}

Final Answer:

5A5B=[52030201545]5A - 5B = \begin{bmatrix} -5 & 20 \\ -30 & 20 \\ 15 & 45 \end{bmatrix}

Would you like a detailed explanation of any step?

Here are 5 questions related to the topic:

  1. How do you perform scalar multiplication on a matrix?
  2. What is matrix addition and subtraction?
  3. What is the determinant of a matrix, and how is it calculated?
  4. How can matrices be used to solve systems of linear equations?
  5. What are the properties of matrix multiplication?

Tip: Always verify the dimensions of matrices when performing operations like addition or multiplication to ensure they are compatible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Scalar Multiplication
Matrix Subtraction

Formulas

5A - 5B = 5 * A - 5 * B

Theorems

Matrix Scalar Multiplication
Matrix Addition and Subtraction

Suitable Grade Level

Grade 10-12