Math Problem Statement

Jika A = [[1, -4], [2, 3]], B = [[1, 3], [2, 4]], Tentukan hasil dari B^T - A dan A^T + B.

Solution

The given problem involves matrix operations. Let's analyze and solve each part step by step.

We have the matrices: A=[1423],B=[1324]A = \begin{bmatrix} 1 & -4 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}

Step 1: Compute Transposes

The transpose of a matrix MM is obtained by swapping its rows and columns.

  • Transpose of AA (denoted ATA^T): AT=[1243]A^T = \begin{bmatrix} 1 & 2 \\ -4 & 3 \end{bmatrix}

  • Transpose of BB (denoted BTB^T): BT=[1234]B^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}

Step 2: Solve (a) BTAB^T - A

BTA=[1234][1423]B^T - A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 1 & -4 \\ 2 & 3 \end{bmatrix}

Perform element-wise subtraction:

BTA=[112(4)3243]=[0611]B^T - A = \begin{bmatrix} 1-1 & 2-(-4) \\ 3-2 & 4-3 \end{bmatrix} = \begin{bmatrix} 0 & 6 \\ 1 & 1 \end{bmatrix}

Step 3: Solve (b) AT+BA^T + B

AT+B=[1243]+[1324]A^T + B = \begin{bmatrix} 1 & 2 \\ -4 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}

Perform element-wise addition:

AT+B=[1+12+34+23+4]=[2527]A^T + B = \begin{bmatrix} 1+1 & 2+3 \\ -4+2 & 3+4 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -2 & 7 \end{bmatrix}

Final Answers:

  • BTA=[0611]B^T - A = \begin{bmatrix} 0 & 6 \\ 1 & 1 \end{bmatrix}
  • AT+B=[2527]A^T + B = \begin{bmatrix} 2 & 5 \\ -2 & 7 \end{bmatrix}

Would you like further clarification on any steps?

Here are five related questions to deepen your understanding:

  1. How do you find the inverse of a 2×22 \times 2 matrix?
  2. What is the determinant of matrix AA and BB?
  3. How do you multiply two matrices together?
  4. What are the properties of transpose operations in matrices?
  5. How can matrices be used to solve systems of linear equations?

Tip: When dealing with matrices, always check for properties like symmetry, determinant, and rank to understand their behavior in mathematical operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Transpose
Matrix Addition
Matrix Subtraction

Formulas

Transpose of matrix A, A^T
Matrix addition
Matrix subtraction

Theorems

Properties of matrix transpose

Suitable Grade Level

Grades 10-12