Math Problem Statement

Let A =   1 0 0 1 0 0 1 3 4   = [ A11 A12 A21 A22 ] and B =   1 2 0 0 3 4   = [ B11 B12 B21 B22 ] . (a) Find (i) A11B11 + A12B21, (ii) A11B12 + A12B22, (iii) A21B11 + A22B21, (iv)A21B12 + A22B22 (b) Find AB using your work from part (a)

Solution

Given the matrices AA and BB, we are asked to perform matrix multiplication and compute specific products.

Matrices:

Matrix AA is given as:

\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 3 & 4 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$ Where: - $$A_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ - $$A_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$ - $$A_{21} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$ - $$A_{22} = \begin{bmatrix} 3 & 4 \end{bmatrix}$$ Matrix $$B$$ is given as: $$B = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 3 & 4 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$ Where: - \( B_{11} = \begin{bmatrix} 1 & 2 \\ 0 & 3 & 4 \end{bmatrix} The products based on your child

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Linear Algebra
Block Matrices

Formulas

Matrix multiplication: (AB)ij = Σ Aik * Bkj

Theorems

Distributive property of matrices
Associative property of matrix multiplication

Suitable Grade Level

College Level