Math Problem Statement

Given the following matrices, if possible, determine 4A + 5B. If not, state 'Not Possible'. A = [[9], [9]], B = [[2], [-1]]

Solution

The question asks to compute 4A+5B4A + 5B, where the matrices AA and BB are given as follows:

A=[99],B=[21]A = \begin{bmatrix} 9 \\ 9 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}

To solve for 4A+5B4A + 5B, follow these steps:

Step 1: Multiply the matrices by their respective scalars:

  • 4A=4×[99]=[4×94×9]=[3636]4A = 4 \times \begin{bmatrix} 9 \\ 9 \end{bmatrix} = \begin{bmatrix} 4 \times 9 \\ 4 \times 9 \end{bmatrix} = \begin{bmatrix} 36 \\ 36 \end{bmatrix}
  • 5B=5×[21]=[5×25×1]=[105]5B = 5 \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \times 2 \\ 5 \times -1 \end{bmatrix} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}

Step 2: Add the resulting matrices:

4A+5B=[3636]+[105]=[36+10365]=[4631]4A + 5B = \begin{bmatrix} 36 \\ 36 \end{bmatrix} + \begin{bmatrix} 10 \\ -5 \end{bmatrix} = \begin{bmatrix} 36 + 10 \\ 36 - 5 \end{bmatrix} = \begin{bmatrix} 46 \\ 31 \end{bmatrix}

Final Answer:

4A+5B=[4631]4A + 5B = \begin{bmatrix} 46 \\ 31 \end{bmatrix}

Let me know if you need more details or clarifications!

Here are 5 related questions to deepen your understanding:

  1. What are the properties of scalar multiplication in matrix operations?
  2. How do you know when matrix addition is possible?
  3. Can you multiply matrices of different dimensions by the same scalar?
  4. What happens when you add a matrix to its negation?
  5. How do matrix operations extend to higher dimensions?

Tip: Always check if the dimensions of matrices are the same before adding them!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Addition
Scalar Multiplication

Formulas

Scalar multiplication: cA = c * A
Matrix addition: A + B = [[a11 + b11], [a12 + b12]]

Theorems

Matrix addition is possible if and only if the matrices have the same dimensions.

Suitable Grade Level

Grades 8-10