Math Problem Statement
Tentu! Berikut adalah contoh soal matriks beserta jawabannya.
Soal:
Diberikan dua matriks A dan B sebagai berikut:
[ A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix} ,\quad B = \begin{pmatrix} 5 & 6 \ 7 & 8 \end{pmatrix} ]
Hitung hasil penjumlahan matriks (A + B) dan hasil perkalian matriks (A \times B).
Jawaban:
- Penjumlahan Matriks (A + B)
Untuk menjumlahkan dua matriks, kita cukup menjumlahkan elemen-elemen yang bersesuaian.
[ A + B = \begin{pmatrix} 1 + 5 & 2 + 6 \ 3 + 7 & 4 + 8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \ 10 & 12 \end{pmatrix} ]
- Perkalian Matriks (A \times B)
Untuk mengalikan dua matriks, kita menggunakan rumus di mana elemen (C_{ij}) dari matriks hasil (C) diperoleh dengan cara menjumlahkan hasil kali elemen baris (i) dari matriks pertama dengan elemen kolom (j) dari matriks kedua.
[ A \times B = \begin{pmatrix} (1 \times 5 + 2 \times 7) & (1 \times 6 + 2 \times 8) \ (3 \times 5 + 4 \times 7) & (3 \times 6 + 4 \times 8) \end{pmatrix} ]
Menghitung setiap elemen:
-
Elemen (C_{11}): (1 \times 5 + 2 \times 7 = 5 + 14 = 19)
-
Elemen (C_{12}): (1 \times 6 + 2 \times 8 = 6 + 16 = 22)
-
Elemen (C_{21}): (3 \times 5 + 4 \times 7 = 15 + 28 = 43)
-
Elemen (C_{22}): (3 \times 6 + 4 \times 8 = 18 + 32 = 50)
Sehingga, hasil perkalian matriks (A \times B) adalah:
[ A \times B = \begin{pmatrix} 19 & 22 \ 43 & 50 \end{pmatrix} ]
Kesimpulan:
Hasil penjumlahan (A + B) adalah:
[ \begin{pmatrix} 6 & 8 \ 10 & 12 \end{pmatrix} ]
Hasil perkalian (A \times B) adalah:
[ \begin{pmatrix} 19 & 22 \ 43 & 50 \end{pmatrix} ]
Solution
Tentu! Mari kita bahas jawaban dari soal matriks tersebut dengan lebih detail.
Penjelasan:
-
Penjumlahan Matriks
Penjumlahan matriks dilakukan dengan menjumlahkan elemen-elemen pada posisi yang sama dari kedua matriks. Matriks dan masing-masing memiliki dimensi 2x2, sehingga penjumlahan elemen-elemen yang bersesuaian dilakukan sebagai berikut:
1 + 5 & 2 + 6 \\ 3 + 7 & 4 + 8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$$ -
Perkalian Matriks
Perkalian matriks dilakukan dengan menghitung hasil kali elemen-elemen baris dari matriks dengan elemen-elemen kolom dari matriks . Rumus umum untuk matriks 2x2 adalah:
C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$ Di mana: - $$C_{11} = (1 \times 5) + (2 \times 7) = 5 + 14 = 19$$ - $$C_{12} = (1 \times 6) + (2 \times 8) = 6 + 16 = 22$$ - $$C_{21} = (3 \times 5) + (4 \times 7) = 15 + 28 = 43$$ - $$C_{22} = (3 \times 6) + (4 \times 8) = 18 + 32 = 50$$ Sehingga hasil dari perkalian matriks $$A \times B$$ adalah: $$A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$
Kesimpulan:
-
Hasil penjumlahan matriks adalah:
6 & 8 \\ 10 & 12 \end{pmatrix}$$ -
Hasil perkalian matriks adalah:
19 & 22 \\ 43 & 50 \end{pmatrix}$$
Jika ada pertanyaan atau Anda ingin penjelasan lebih lanjut, jangan ragu untuk bertanya!
Pertanyaan Terkait:
- Bagaimana cara menentukan dimensi dari hasil perkalian dua matriks?
- Apa yang terjadi jika kita mencoba menjumlahkan dua matriks dengan dimensi yang berbeda?
- Bagaimana cara menghitung determinan dari matriks ?
- Apa bedanya perkalian matriks dengan penjumlahan matriks?
- Dapatkah kita mengalikan matriks dan apakah hasilnya sama?
Tip:
Selalu pastikan dimensi matriks yang akan dikalikan sesuai. Untuk perkalian matriks , jumlah kolom di matriks harus sama dengan jumlah baris di matriks .
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Addition
Matrix Multiplication
Formulas
Matrix Addition: A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}
Matrix Multiplication: A \times B = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}
Theorems
Properties of Matrix Operations
Suitable Grade Level
Grades 9-12