Math Problem Statement

Hasil dari matriks C + D^T adalah ...

Solution

Let's break down the problem from the image you've uploaded:

Given Matrices:

  1. Matrix A: A=[12]A = \begin{bmatrix} 1 & 2 \end{bmatrix}
  2. Matrix B: B=[2315]B = \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}
  3. Matrix C: C=[6408210]C = \begin{bmatrix} 6 & 4 & 0 \\ 8 & 2 & -10 \end{bmatrix}
  4. Matrix D: D=[351204]D = \begin{bmatrix} 3 & 5 \\ 1 & 2 \\ 0 & -4 \end{bmatrix}
  5. Matrix E: E=[121234123]E = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}

The problem is asking for the result of C+DTC + D^T, where DTD^T is the transpose of matrix DD.

Step 1: Transpose of Matrix DD

Transpose of a matrix is obtained by flipping it over its diagonal. For matrix DD, we get: DT=[310524]D^T = \begin{bmatrix} 3 & 1 & 0 \\ 5 & 2 & -4 \end{bmatrix}

Step 2: Adding CC and DTD^T

Now, we can add matrix CC and matrix DTD^T, element by element:

C=[6408210],DT=[310524]C = \begin{bmatrix} 6 & 4 & 0 \\ 8 & 2 & -10 \end{bmatrix}, \quad D^T = \begin{bmatrix} 3 & 1 & 0 \\ 5 & 2 & -4 \end{bmatrix}

Performing the element-wise addition:

C+DT=[6+34+10+08+52+210+(4)]=[95013414]C + D^T = \begin{bmatrix} 6+3 & 4+1 & 0+0 \\ 8+5 & 2+2 & -10+(-4) \end{bmatrix} = \begin{bmatrix} 9 & 5 & 0 \\ 13 & 4 & -14 \end{bmatrix}

Thus, the result of C+DTC + D^T is: [95013414]\boxed{\begin{bmatrix} 9 & 5 & 0 \\ 13 & 4 & -14 \end{bmatrix}}


Let me know if you need further clarifications or details.

Here are 5 related questions for further practice:

  1. What is the transpose of matrix BB?
  2. Can you find the product A×BA \times B?
  3. What is the determinant of matrix EE?
  4. How do you find the inverse of matrix BB, if it exists?
  5. How would you calculate D×ED \times E?

Tip:

Always remember that matrix addition requires the matrices to have the same dimensions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Addition
Matrix Transposition

Formulas

C + D^T = (c_ij) + (d^T_ij)
Transpose of a matrix: D^T = (d_ji)

Theorems

Matrix Transposition Theorem

Suitable Grade Level

Grades 10-12