Math Problem Statement

solve in detail

6. Find all 2 × 2 matrices which commute with the matrix [2 3; 1 4]. 7. If A = [1 0; -1 1], show that A^2 - 2A + I2 = O2. Hence find A^50.

Solution

Let's solve each question step-by-step.

Problem 6: Finding All 2×22 \times 2 Matrices That Commute with a Given Matrix

We need to find all 2×22 \times 2 matrices B=(abcd)B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} that commute with the matrix A=(2314).A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}.

For two matrices to commute, AB=BAAB = BA. Therefore, we calculate both ABAB and BABA and equate them.

  1. Calculate ABAB: AB=(2314)(abcd)=(2a+3c2b+3da+4cb+4d).AB = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2a + 3c & 2b + 3d \\ a + 4c & b + 4d \end{pmatrix}.

  2. Calculate BABA: BA=(abcd)(2314)=(2a+b3a+4b2c+d3c+4d).BA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 2a + b & 3a + 4b \\ 2c + d & 3c + 4d \end{pmatrix}.

  3. Equate AB=BAAB = BA: (2a+3c2b+3da+4cb+4d)=(2a+b3a+4b2c+d3c+4d).\begin{pmatrix} 2a + 3c & 2b + 3d \\ a + 4c & b + 4d \end{pmatrix} = \begin{pmatrix} 2a + b & 3a + 4b \\ 2c + d & 3c + 4d \end{pmatrix}.

  4. Set up the system of equations by comparing elements:

    • From the (1,1) position: 2a+3c=2a+bb=3c2a + 3c = 2a + b \Rightarrow b = 3c.
    • From the (1,2) position: 2b+3d=3a+4b3d=3a+2b2b + 3d = 3a + 4b \Rightarrow 3d = 3a + 2b.
    • From the (2,1) position: ( a + 4c = 2c + d \Rightarrow d = -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Multiplication
Matrix Powers
Commutative Property in Matrices

Formulas

Matrix commutation: AB = BA
Matrix powers and polynomial equations for matrices: A^n

Theorems

Commutative property in matrices

Suitable Grade Level

Undergraduate (University Level)