Math Problem Statement

Suppose that a thin metal wire in the shape of a semicircle occupies the curve C, where C is the top half of the circle x^2 + y^2 = 9. The mass density of the wire is described by the function ρ(x, y) = x^2y. Find the total mass of the wire.

Solution

To solve this problem, we need to calculate the total mass of the wire, which involves integrating the mass density function ρ(x,y)=x2y\rho(x, y) = x^2 y along the semicircular curve CC, the top half of the circle x2+y2=9x^2 + y^2 = 9.

Step-by-Step Solution:

  1. Parametrize the curve CC: The semicircle can be parametrized as: x=3cos(t),y=3sin(t),t[0,π].x = 3\cos(t), \quad y = 3\sin(t), \quad t \in [0, \pi]. The curve represents the top half of the circle x2+y2=9x^2 + y^2 = 9.

  2. Arc length differential dsds: The arc length differential dsds is given by: ds=(dxdt)2+(dydt)2dt.ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt. For the parametrization: dxdt=3sin(t),dydt=3cos(t).\frac{dx}{dt} = -3\sin(t), \quad \frac{dy}{dt} = 3\cos(t). Therefore: ds=(3sin(t))2+(3cos(t))2dt=9sin2(t)+9cos2(t)dt=9dt=3dt.ds = \sqrt{(-3\sin(t))^2 + (3\cos(t))^2} dt = \sqrt{9\sin^2(t) + 9\cos^2(t)} dt = \sqrt{9} dt = 3dt.

  3. Substitute (x,y)(x, y) and dsds: Substituting the parametrization and dsds, the total mass MM is: M=Cρ(x,y)ds=0πρ(3cos(t),3sin(t))ds.M = \int_C \rho(x, y) \, ds = \int_0^\pi \rho(3\cos(t), 3\sin(t)) \cdot ds. Since ρ(x,y)=x2y\rho(x, y) = x^2 y, we substitute: ρ(3cos(t),3sin(t))=(3cos(t))2(3sin(t))=9cos2(t)3sin(t)=27cos2(t)sin(t).\rho(3\cos(t), 3\sin(t)) = (3\cos(t))^2 \cdot (3\sin(t)) = 9\cos^2(t) \cdot 3\sin(t) = 27\cos^2(t)\sin(t). Also, ds=3dtds = 3dt. Thus: M=0π27cos2(t)sin(t)3dt=0π81cos2(t)sin(t)dt.M = \int_0^\pi 27\cos^2(t)\sin(t) \cdot 3 \, dt = \int_0^\pi 81\cos^2(t)\sin(t) \, dt.

  4. Simplify and compute the integral: Use the substitution u=cos(t)u = \cos(t), so: du=sin(t)dt,sin(t)dt=du.du = -\sin(t) dt, \quad \sin(t) dt = -du. When t=0t = 0, u=cos(0)=1u = \cos(0) = 1. When t=πt = \pi, u=cos(π)=1u = \cos(\pi) = -1. The integral becomes: M=8111u2(1)du=8111u2du.M = 81 \int_1^{-1} u^2 \cdot (-1) \, du = 81 \int_{-1}^1 u^2 \, du. Now compute the integral: 11u2du=[u33]11=(1)33(1)33=13(13)=23.\int_{-1}^1 u^2 \, du = \left[\frac{u^3}{3}\right]_{-1}^1 = \frac{(1)^3}{3} - \frac{(-1)^3}{3} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3}. So: M=8123=54.M = 81 \cdot \frac{2}{3} = 54.

Final Answer:

The total mass of the wire is: 54.\boxed{54}.

Let me know if you want further clarification or additional help!


Related Questions to Explore:

  1. How would the mass calculation change if the density function were ρ(x,y)=x2+y2\rho(x, y) = x^2 + y^2?
  2. What is the length of the semicircular wire in this problem?
  3. How can we adapt this method to find the mass of the full circular wire?
  4. What happens if the density is constant? How does that simplify the integral?
  5. How do we parametrize a quarter-circle instead of a semicircle?

Tip:

Always carefully parametrize the curve and ensure the limits of integration match the curve’s domain.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Arc Length Integration
Trigonometric Substitution
Definite Integrals

Formulas

Mass = ∫C ρ(x, y) ds
ds = √((dx/dt)^2 + (dy/dt)^2) dt
Parametrization: x = r cos(t), y = r sin(t)

Theorems

Pythagorean Theorem
Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus