The Maclaurin series is the expansion of a function f(x) about x=0. Let's derive the Maclaurin series of
f(x)=1+1+x21−1+x2
to n-th power.
Step 1: Simplify the function
For ease of handling, rewrite f(x) as:
f(x)=1+1+x21−1+x2.
Define u=1+x2, so the function becomes:
f(x)=1+u1−u.
Step 2: Expand u=1+x2 around x=0
Using the binomial expansion for 1+x2, we get:
1+x2=1+2x2−8x4+16x6−⋯.
Thus:
u=1+x2=1+2x2−8x4+16x6−⋯.
Step 3: Expand f(x)
Substitute u into f(x)=1+u1−u:
f(x)=1+(1+2x2−8x4+⋯)1−(1+2x2−8x4+⋯).
Simplify the numerator and denominator:
1−u=−2x2+8x4−⋯,
1+u=2+2x2−8x4+⋯.
Thus:
f(x)=2+2x2−8x4+⋯−2x2+8x4−⋯.
Divide term by term, using 2+⋯1≈21−41(higher terms). To second order:
f(x)≈−4x2+323x4−⋯.
Step 4: Raise f(x) to the n-th power
For f(x)n, use the series expansion:
(1+a+b+⋯)n≈1+n(a+b+⋯)+2n(n−1)(a+b+⋯)2+⋯.
Thus:
f(x)n=(−4x2+323x4−⋯)n.
For small x, the dominant term is:
f(x)n≈(−4x2)n=(−1)n4nx2n.
Final Answer
The Maclaurin series for f(x)n up to the x2n-term is:
f(x)n≈(−1)n4nx2n+higher-order terms.
Would you like a detailed step-by-step expansion for specific values of n?