Math Problem Statement

maclaurin series to n power of (1-sqrt(1+x^2))/(1+sqrt(1+x^2))

Solution

The Maclaurin series is the expansion of a function f(x)f(x) about x=0x = 0. Let's derive the Maclaurin series of

f(x)=11+x21+1+x2f(x) = \frac{1 - \sqrt{1+x^2}}{1 + \sqrt{1+x^2}}

to nn-th power.


Step 1: Simplify the function

For ease of handling, rewrite f(x)f(x) as: f(x)=11+x21+1+x2.f(x) = \frac{1 - \sqrt{1+x^2}}{1 + \sqrt{1+x^2}}.

Define u=1+x2u = \sqrt{1 + x^2}, so the function becomes: f(x)=1u1+u.f(x) = \frac{1 - u}{1 + u}.


Step 2: Expand u=1+x2u = \sqrt{1+x^2} around x=0x=0

Using the binomial expansion for 1+x2\sqrt{1+x^2}, we get: 1+x2=1+x22x48+x616.\sqrt{1+x^2} = 1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16} - \cdots.

Thus: u=1+x2=1+x22x48+x616.u = \sqrt{1+x^2} = 1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16} - \cdots.


Step 3: Expand f(x)f(x)

Substitute uu into f(x)=1u1+uf(x) = \frac{1 - u}{1 + u}: f(x)=1(1+x22x48+)1+(1+x22x48+).f(x) = \frac{1 - (1 + \frac{x^2}{2} - \frac{x^4}{8} + \cdots)}{1 + (1 + \frac{x^2}{2} - \frac{x^4}{8} + \cdots)}.

Simplify the numerator and denominator: 1u=x22+x48,1 - u = -\frac{x^2}{2} + \frac{x^4}{8} - \cdots, 1+u=2+x22x48+.1 + u = 2 + \frac{x^2}{2} - \frac{x^4}{8} + \cdots.

Thus: f(x)=x22+x482+x22x48+.f(x) = \frac{-\frac{x^2}{2} + \frac{x^4}{8} - \cdots}{2 + \frac{x^2}{2} - \frac{x^4}{8} + \cdots}.

Divide term by term, using 12+1214(higher terms)\frac{1}{2 + \cdots} \approx \frac{1}{2} - \frac{1}{4}(\text{higher terms}). To second order: f(x)x24+3x432.f(x) \approx -\frac{x^2}{4} + \frac{3x^4}{32} - \cdots.


Step 4: Raise f(x)f(x) to the nn-th power

For f(x)nf(x)^n, use the series expansion: (1+a+b+)n1+n(a+b+)+n(n1)2(a+b+)2+.(1 + a + b + \cdots)^n \approx 1 + n(a + b + \cdots) + \frac{n(n-1)}{2}(a + b + \cdots)^2 + \cdots.

Thus: f(x)n=(x24+3x432)n.f(x)^n = \left(-\frac{x^2}{4} + \frac{3x^4}{32} - \cdots\right)^n.

For small xx, the dominant term is: f(x)n(x24)n=(1)nx2n4n.f(x)^n \approx \left(-\frac{x^2}{4}\right)^n = (-1)^n \frac{x^{2n}}{4^n}.


Final Answer

The Maclaurin series for f(x)nf(x)^n up to the x2nx^{2n}-term is: f(x)n(1)nx2n4n+higher-order terms.f(x)^n \approx (-1)^n \frac{x^{2n}}{4^n} + \text{higher-order terms}.

Would you like a detailed step-by-step expansion for specific values of nn?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Maclaurin Series
Binomial Expansion
Power Series Expansion

Formulas

Maclaurin Series: f(x) = f(0) + f'(0)x + f''(0)x^2/2! + ...
Binomial Expansion: (1+x)^n = 1 + nx + n(n-1)x^2/2! + ...
Series Multiplication: (a+b)^n for series terms

Theorems

Taylor and Maclaurin Series Theorem
Binomial Theorem

Suitable Grade Level

Undergraduate Level (Calculus)