Math Problem Statement

Construct a proof for the argument: P v Q, P -> ~R, R ∴ Q

1P ∨ Q

2P → ¬R

3R

Notation for logic operators

negation:

conjunction:

^

disjunction:

v

conditional:

->

biconditional:

<->

universal quantification:

Ax or (Ax)

existential quantification:

Ex or (Ex)

Rule names (full and abbreviated)

modus ponens

->E

modus tollens

MT

modus tollendo ponens

DS

double negation

DNE

addition

vI

adjunction

^I

simplification

^E

bicondition

<->I

equivalence

<->E

repeat

Rep

conditional derivation

->I

reductio ad absurdum

RAA

universal instantiation

AE

universal derivation

AI

existential instantiation

EE

existential generalization

EI

identity introduction

=I

substitution of identicals

=E

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Logical Proofs

Formulas

Disjunction (P ∨ Q)
Implication (P -> ~R)
Modus Tollens
Disjunction Elimination

Theorems

Modus Tollens
Double Negation
Disjunction Elimination (Modus Tollendo Ponens)

Suitable Grade Level

Undergraduate