Math Problem Statement

Cho x, y là các số thực thỏa mãn f(x, y) = log4(x + y) + log4(x - y) ≥ 1. Các khẳng định sau đúng hay sai? a) Điều kiện xác định của hàm số f(x, y) là: x + y > 0, x - y > 0. b) Với cặp số x, y thỏa mãn điều kiện xác định của hàm số f(x, y), ta có: f(x, y) = x^2 - y^2. c) Cặp số x = 8, y = 16 thỏa mãn f(x, y) = log4(x + y) + log4(x - y) ≥ 1. d) Với P = 2x - y, thì Pmin = 2√3.

Solution

It looks like you've uploaded a mathematical problem. I'll analyze it to help solve it.

The problem involves a function f(x,y)=log4(x+y)+log4(xy)f(x, y) = \log_4(x + y) + \log_4(x - y) with a given inequality condition log4(x+y)+log4(xy)1\log_4(x + y) + \log_4(x - y) \geq 1. It asks to determine the domain and conditions for the function to be well-defined.

Let me break it down and address the parts of the question:

  1. Part a: Determine the conditions for the function f(x,y)f(x, y) to be well-defined.

    • For log4(x+y)\log_4(x + y) and log4(xy)\log_4(x - y) to be defined, both x+y>0x + y > 0 and xy>0x - y > 0 must hold true.
  2. Part b: With the above conditions, find additional domain conditions for the function f(x,y)=x2y2f(x, y) = x^2 - y^2.

  3. Part c: For specific values of x=8x = 8 and y=16y = 16, check whether the inequality condition holds.

  4. Part d: Given P=2xyP = 2x - y, find the minimum value of PP satisfying the inequality Pmin=23P_{\text{min}} = 2\sqrt{3}.

Would you like a detailed explanation of any of these parts or a solution for a specific section?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Inequalities
Algebra
Functions

Formulas

logarithmic properties
Pythagorean identity
function evaluation

Theorems

Logarithmic rules for domain
Minimum value of a function

Suitable Grade Level

Grades 11-12