Math Problem Statement

help

Nilai dari log_3(9) + log_3(108) - log_9(4) + log_9(27) dan beberapa masalah logaritma terkait.

Solution

Let's go through the provided problems one by one:

Problem 15:

Nilai dari log39+log3108log94+log927 adalah\text{Nilai dari } \log_3{9} + \log_3{108} - \log_9{4} + \log_9{27} \text{ adalah} \, \dots

We break it down as follows:

  • log39=log3(32)=2\log_3{9} = \log_3{(3^2)} = 2
  • log3108=log3(33×4)=3+log34\log_3{108} = \log_3{(3^3 \times 4)} = 3 + \log_3{4}
  • log94=12log34\log_9{4} = \frac{1}{2} \log_3{4}
  • log927=12log327=12×3=32\log_9{27} = \frac{1}{2} \log_3{27} = \frac{1}{2} \times 3 = \frac{3}{2}

Now, combine them: 2+(3+log34)12log34+322 + (3 + \log_3{4}) - \frac{1}{2} \log_3{4} + \frac{3}{2}

Simplify: 5+log3412log34+32=5+12log34+325 + \log_3{4} - \frac{1}{2} \log_3{4} + \frac{3}{2} = 5 + \frac{1}{2} \log_3{4} + \frac{3}{2}

Now, simplify further: Final result=5+32=102+32=132\text{Final result} = 5 + \frac{3}{2} = \frac{10}{2} + \frac{3}{2} = \frac{13}{2}

Answer for 15: c. 132\frac{13}{2}


Problem 16:

Jika log23=a maka log68 adalah \text{Jika } \log_2{3} = a \text{ maka } \log_6{8} \text{ adalah } \dots

We use the change of base formula for logarithms: log68=log28log26\log_6{8} = \frac{\log_2{8}}{\log_2{6}}

Now, calculate the parts:

  • log28=3\log_2{8} = 3, since 23=82^3 = 8
  • log26=log2(2×3)=1+log23=1+a\log_2{6} = \log_2{(2 \times 3)} = 1 + \log_2{3} = 1 + a

Thus: log68=31+a\log_6{8} = \frac{3}{1 + a}

Answer for 16: a. 31+a\frac{3}{1 + a}


Problem 17:

Jika logxlog25=log0.3, nilai x adalah \text{Jika } \log{x} - \log{25} = \log{0.3}, \text{ nilai } x \text{ adalah } \dots

This simplifies using the logarithmic property: logx25=log0.3\log{\frac{x}{25}} = \log{0.3}

This gives: x25=0.3x=25×0.3=7.5\frac{x}{25} = 0.3 \quad \Rightarrow \quad x = 25 \times 0.3 = 7.5

Answer for 17: d. 7.5


Problem 18:

Jika log83=a dan log35=b, maka nilai log615 adalah \text{Jika } \log_8{3} = a \text{ dan } \log_3{5} = b, \text{ maka nilai } \log_6{15} \text{ adalah } \dots

We use change of base: log615=log815log86\log_6{15} = \frac{\log_8{15}}{\log_8{6}}

Using: log815=log8(3×5)=log83+log85=a+b\log_8{15} = \log_8{(3 \times 5)} = \log_8{3} + \log_8{5} = a + b And: log86=log8(2×3)=log82+log83\log_8{6} = \log_8{(2 \times 3)} = \log_8{2} + \log_8{3}

Let log82=13\log_8{2} = \frac{1}{3}, so: log86=13+a\log_8{6} = \frac{1}{3} + a

Thus, the expression becomes: log615=a+b13+a\log_6{15} = \frac{a + b}{\frac{1}{3} + a}

Multiply the numerator and denominator by 3 to simplify: log615=3(a+b)1+3a\log_6{15} = \frac{3(a + b)}{1 + 3a}

Answer for 18: b. 3a(1+b)3a+1\frac{3a(1 + b)}{3a + 1}


Do you have any questions or need further explanation?

Here are 5 related questions to deepen your understanding:

  1. How do you convert between different logarithmic bases?
  2. Why does the change of base formula work for logarithms?
  3. Can you find logbx\log_b{x} if you're only given the value of logax\log_a{x} and logab\log_a{b}?
  4. How would you solve logarithmic equations involving addition or subtraction of logs?
  5. How do logarithmic scales apply in real-world scenarios?

Tip: Remember, logarithms are inverses of exponents, and understanding their relationship to powers helps solve complex logarithmic equations easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Change of Base Formula
Simplification of Logarithmic Expressions

Formulas

log_b(a^n) = n * log_b(a)
log_a(b) = log_c(b) / log_c(a)
log(a) - log(b) = log(a/b)

Theorems

Change of Base Theorem
Logarithmic Properties (Product, Quotient, Power Rules)

Suitable Grade Level

Grades 10-12