Math Problem Statement

Solve the following logarithmic equations: 1. ln x = -3, 2. log(3x - 2) = 2, 3. 2 log x = log 2 + log(3x - 4), 4. log x + log(x - 1) = log(4x), 5. log3(x + 25) - log3(x - 1) = 3, 6. log9(x - 5) + log9(x + 3) = 1, 7. log x + log (x - 3) = 1, 8. log2(x - 2) + log2(x + 1) = 2.

Solution

Let's solve these logarithmic equations one by one.

1. lnx=3\ln x = -3

To solve this, we rewrite the natural logarithm in exponential form:

x=e3x = e^{-3}

Thus, x=1e30.0498x = \frac{1}{e^3} \approx 0.0498.

2. log(3x2)=2\log(3x - 2) = 2

Rewrite in exponential form using base 10:

3x2=102=1003x - 2 = 10^2 = 100

Now, solve for xx:

3x=100+2=102x=1023=343x = 100 + 2 = 102 \quad \Rightarrow \quad x = \frac{102}{3} = 34

3. 2logx=log2+log(3x4)2 \log x = \log 2 + \log(3x - 4)

Use the properties of logarithms to simplify:

logx2=log(2(3x4))\log x^2 = \log(2(3x - 4))

Since the logarithms are equal, we can set the arguments equal:

x2=2(3x4)x^2 = 2(3x - 4)

Expanding and solving the quadratic equation:

x2=6x8x26x+8=0x^2 = 6x - 8 \quad \Rightarrow \quad x^2 - 6x + 8 = 0

Using the quadratic formula:

x=6±(6)24(1)(8)2(1)=6±36322=6±42=6±22x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(8)}}{2(1)} = \frac{6 \pm \sqrt{36 - 32}}{2} = \frac{6 \pm \sqrt{4}}{2} = \frac{6 \pm 2}{2}

So, x=6+22=4x = \frac{6 + 2}{2} = 4 or x=622=2x = \frac{6 - 2}{2} = 2.

Thus, x=4x = 4 or x=2x = 2.

4. logx+log(x1)=log(4x)\log x + \log(x - 1) = \log(4x)

Combine the logarithms:

log(x(x1))=log(4x)\log(x(x - 1)) = \log(4x)

Since the logarithms are equal, set the arguments equal:

x(x1)=4xx(x - 1) = 4x

Expand and simplify:

x2x=4xx25x=0x(x5)=0x^2 - x = 4x \quad \Rightarrow \quad x^2 - 5x = 0 \quad \Rightarrow \quad x(x - 5) = 0

Thus, x=0x = 0 or x=5x = 5. However, x=0x = 0 is not a valid solution for a logarithmic equation, so the only solution is x=5x = 5.

5. log3(x+25)log3(x1)=3\log_3(x + 25) - \log_3(x - 1) = 3

Use the properties of logarithms:

log3(x+25x1)=3\log_3\left(\frac{x + 25}{x - 1}\right) = 3

Rewrite in exponential form:

x+25x1=33=27\frac{x + 25}{x - 1} = 3^3 = 27

Now solve for xx:

x+25=27(x1)x+25=27x2725+27=26xx=5226=2x + 25 = 27(x - 1) \quad \Rightarrow \quad x + 25 = 27x - 27 \quad \Rightarrow \quad 25 + 27 = 26x \quad \Rightarrow \quad x = \frac{52}{26} = 2

6. log9(x5)+log9(x+3)=1\log_9(x - 5) + \log_9(x + 3) = 1

Combine the logarithms:

log9((x5)(x+3))=1\log_9((x - 5)(x + 3)) = 1

Rewrite in exponential form:

(x5)(x+3)=91=9(x - 5)(x + 3) = 9^1 = 9

Expand the quadratic:

x25x+3x15=9x22x15=9x22x24=0x^2 - 5x + 3x - 15 = 9 \quad \Rightarrow \quad x^2 - 2x - 15 = 9 \quad \Rightarrow \quad x^2 - 2x - 24 = 0

Solve using the quadratic formula:

x=(2)±(2)24(1)(24)2(1)=2±4+962=2±1002=2±102x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-24)}}{2(1)} = \frac{2 \pm \sqrt{4 + 96}}{2} = \frac{2 \pm \sqrt{100}}{2} = \frac{2 \pm 10}{2}

Thus, (x = \frac{2 + 10}{2}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Equations
Exponential Functions
Logarithmic Properties
Quadratic Equations

Formulas

log_b(a) = c implies a = b^c
log_b(xy) = log_b(x) + log_b(y)
log_b(x/y) = log_b(x) - log_b(y)
log_b(x^n) = n*log_b(x)
Quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)

Theorems

Properties of Logarithms
Exponential and Logarithmic Equivalence
Quadratic Formula

Suitable Grade Level

Grades 10-12