Math Problem Statement

\sqrt[5]{\log _3\left(x\right)}+\log _3\left(\sqrt{x}\right)=12

Solution

We are tasked with solving the equation:

log3(x)5+log3(x)=12\sqrt[5]{\log_3(x)} + \log_3\left(\sqrt{x}\right) = 12

Step 1: Simplify log3(x)\log_3(\sqrt{x})

We can rewrite log3(x)\log_3\left(\sqrt{x}\right) using logarithmic properties. Recall that logb(an)=nlogb(a)\log_b(a^n) = n \log_b(a), so:

log3(x)=log3(x1/2)=12log3(x)\log_3\left(\sqrt{x}\right) = \log_3\left(x^{1/2}\right) = \frac{1}{2} \log_3(x)

Thus, the equation becomes:

log3(x)5+12log3(x)=12\sqrt[5]{\log_3(x)} + \frac{1}{2} \log_3(x) = 12

Step 2: Let y=log3(x)y = \log_3(x)

To simplify further, let's set y=log3(x)y = \log_3(x). The equation now becomes:

y5+12y=12\sqrt[5]{y} + \frac{1}{2}y = 12

Step 3: Introduce a substitution for y5\sqrt[5]{y}

Let z=y5z = \sqrt[5]{y}, which means z5=yz^5 = y. Substituting this into the equation, we get:

[ z

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponents
Algebraic Substitution

Formulas

Logarithmic property: \log_b(a^n) = n \log_b(a)
Exponentiation: z^5 = y

Theorems

Logarithmic identities
Substitution in algebra

Suitable Grade Level

Grades 10-12