Math Problem Statement

(2 log₃ x) - 4 / log₃ (x / 9) = log₃ (x⁷) - (1 / log₃ 3)² - 8. Find the lowest value of X.

Solution

The given equation is:

(2log3x)4log3(x9)=log3(x7)(1log33)28\frac{(2 \log_3 x) - 4}{\log_3 \left( \frac{x}{9} \right)} = \log_3(x^7) - \left( \frac{1}{\log_3 3} \right)^2 - 8

We are tasked with finding the lowest value of xx.

Let's break down and solve this step by step:

Step 1: Simplify the denominator on the left side

The denominator of the left-hand side is: log3(x9)\log_3 \left( \frac{x}{9} \right) We can apply the logarithmic property: log3(x9)=log3xlog39\log_3 \left( \frac{x}{9} \right) = \log_3 x - \log_3 9 Since log39=log3(32)=2\log_3 9 = \log_3 (3^2) = 2, this simplifies to: log3x2\log_3 x - 2 So the left-hand side becomes: 2log3x4log3x2\frac{2 \log_3 x - 4}{\log_3 x - 2}

Step 2: Simplify the right-hand side

On the right-hand side, the term (1log33)2\left( \frac{1}{\log_3 3} \right)^2 simplifies, because log33=1\log_3 3 = 1. Thus, 1log33=1\frac{1}{\log_3 3} = 1, and squaring it gives: 12=11^2 = 1 So, the equation on the right-hand side becomes: log3(x7)18\log_3(x^7) - 1 - 8 Using the logarithmic property (

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Equations
Algebra
Exponents

Formulas

logₐ(x / y) = logₐ(x) - logₐ(y)
logₐ(x^n) = n logₐ(x)
logₐ(a) = 1

Theorems

Properties of Logarithms
Exponent Rules

Suitable Grade Level

Grades 10-12