Math Problem Statement

x y

2 9.58

3 7.46

4 9.28

5 11.58

6 14.94

7 14.97

8 18.43

9 18.04

10 20.42 Find the linear regression line for the following table of values. You will need to use a calculator, spreadsheet, or statistical software. Then, use the equation to estimate the value of y when x is 13. 

Round the values of a and b in the regression equation to the nearest hundredth, then use the equation to solve for y when x=13.  Round the final answer to the nearest hundredth, if necessary.

x

y

2

9.58

3

7.46

4

9.28

5

11.58

6

14.94

7

14.97

8

18.43

9

18.04

10

20.42

HelpCopy to ClipboardDownload CSV

Provide your answer below:

Solution

To solve this, we calculate the linear regression line y=a+bxy = a + b \cdot x, where aa is the y-intercept and bb is the slope of the line.

Step 1: Formula for slope bb

b=n(xy)xynx2(x)2b = \frac{n \sum (x \cdot y) - \sum x \cdot \sum y}{n \sum x^2 - (\sum x)^2}

Step 2: Formula for intercept aa

a=ybxna = \frac{\sum y - b \cdot \sum x}{n}

Step 3: Calculating required values

Let’s calculate the necessary sums for the table provided:

xxyyx2x^2xyx \cdot y
29.58419.16
37.46922.38
49.281637.12
511.582557.90
614.943689.64
714.9749104.79
818.4364147.44
918.0481162.36
1020.42100204.20

Totals:

x=54,y=124.7,x2=384,(xy)=844.99,n=9\sum x = 54, \quad \sum y = 124.7, \quad \sum x^2 = 384, \quad \sum (x \cdot y) = 844.99, \quad n = 9

Step 4: Plug values into the formulas

Slope bb:

b=9844.9954124.79384542b = \frac{9 \cdot 844.99 - 54 \cdot 124.7}{9 \cdot 384 - 54^2} b=7604.916733.834562916b = \frac{7604.91 - 6733.8}{3456 - 2916} b=871.115401.61b = \frac{871.11}{540} \approx 1.61

Intercept aa:

a=ybxna = \frac{\sum y - b \cdot \sum x}{n} a=124.71.61549a = \frac{124.7 - 1.61 \cdot 54}{9} a=124.786.94937.7694.2a = \frac{124.7 - 86.94}{9} \approx \frac{37.76}{9} \approx 4.2

Regression Equation:

y=4.2+1.61xy = 4.2 + 1.61x

Step 5: Estimate yy when x=13x = 13

y=4.2+1.6113y = 4.2 + 1.61 \cdot 13 y=4.2+20.93=25.13y = 4.2 + 20.93 = 25.13

Final Answer:

The regression equation is: y=4.2+1.61xy = 4.2 + 1.61x

When x=13x = 13, y25.13y \approx 25.13.


Would you like a detailed explanation of any step? 😊
Here are five related questions to explore further:

  1. What is the meaning of the slope and y-intercept in this context?
  2. How do outliers affect the linear regression line?
  3. Could a nonlinear regression model fit this data better? Why or why not?
  4. What is the coefficient of determination (R2R^2) for this regression line?
  5. How would you calculate this regression line in Excel or Python?

Tip: Double-check calculations when working with large datasets to avoid rounding errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Regression
Statistics
Algebra

Formulas

b = (n * Σ(xy) - Σx * Σy) / (n * Σx^2 - (Σx)^2)
a = (Σy - b * Σx) / n
y = a + b * x

Theorems

Least Squares Method
Regression Analysis

Suitable Grade Level

Grades 9-12