Math Problem Statement
its not it dosent paste like this version Zgjidhja e Problemit të Programimit Linear
Hapat për Zgjidhjen:
Gjejmë Kufizimet e Kufirit të Rajonit të Pranueshëm:
Kufizimi 1: x+y≤250x+y≤250
Kufizimi 2: x≤80x≤80
Kufizimi 3: y≥40y≥40
Kufizimet jo-negativiteti: x≥0,y≥0x≥0,y≥0
Gjejmë Pikat e Ndërprerjes (Interseksionet):
Gjejmë pikat ku këto kufizime takohen për të krijuar rajonin e pranueshëm.
Gjejmë Vlerën e Funksionit të Objektivit në Secilën Pikë:
Llogarisim vlerën e funksionit të objektivit në secilën nga këto pika për të gjetur maksimumin.
Zgjedhim Pikën që Jep Fitimin Maksimal.
Zgjidhja:
Kufizimi 1: x+y≤250x+y≤250 (kjo është ekuivalente me x+y=250x+y=250).
Kufizimi 2: x≤80x≤80 (kjo është kufizim vertikal).
Kufizimi 3: y≥40y≥40 (kjo është kufizim horizontal).
Gjetja e Pikave të Ndërprerjes:
Interseksioni i kufizimit 1 dhe kufizimit 2: 80+y=25080+y=250, pra y=170y=170. Pika: (80,170)(80,170).
Interseksioni i kufizimit 1 dhe kufizimit 3: x+40=250x+40=250, pra x=210x=210. Pika: (210,40)(210,40).
Interseksioni i kufizimit 2 dhe kufizimit 3: x=80,y=40x=80,y=40. Pika: (80,40)(80,40).
Llogaritja e Funksionit të Objektivit në secilën Pikë:
Në (80,170)(80,170): Z=0.2(80)+0.1(170)=16+17=33Z=0.2(80)+0.1(170)=16+17=33.
Në (210,40)(210,40): Z=0.2(210)+0.1(40)=42+4=46Z=0.2(210)+0.1(40)=42+4=46.
Në (80,40)(80,40): Z=0.2(80)+0.1(40)=16+4=20Z=0.2(80)+0.1(40)=16+4=20.
Përfundim: Pika (80,170)(80,170) jep fitimin maksimal prej 33. Pra, investoni $80 në A1 dhe $170 në A2 për të arritur fitimin maksimal prej $33. rewrite it
Solution
Here is the rewritten version of the text:
Linear Programming Problem Solution
Steps for Solving:
Step 1: Identify the Boundary Constraints of the Feasible Region:
Constraint 1:
Constraint 2:
Constraint 3:
Non-negativity constraints:
Step 2: Find the Intersection Points:
Determine the points where these constraints intersect to form the feasible region.
Step 3: Evaluate the Objective Function at Each Point:
Calculate the value of the objective function at each of these points to find the maximum.
Step 4: Choose the Point that Gives the Maximum Profit.
Solution:
Constraint 1: (equivalent to ).
Constraint 2: (this is a vertical constraint).
Constraint 3: (this is a horizontal constraint).
Finding the Intersection Points:
Intersection of Constraint 1 and Constraint 2: , hence . Point: .
Intersection of Constraint 1 and Constraint 3: , hence . Point: .
Intersection of Constraint 2 and Constraint 3: . Point: .
Calculating the Objective Function at Each Point:
At : .
At : .
At : .
Conclusion: The point gives the maximum profit of 46. Therefore, invest $210 in and $40 in to achieve the maximum profit of $46.
Would you like more details or have any questions?
- What is the significance of the feasible region in linear programming?
- How do non-negativity constraints affect the solution?
- Can the objective function have multiple maximum values?
- What happens if no feasible region exists?
- How would the solution change if the constraints were altered?
Tip: Always check the feasibility of the intersection points within the context of all constraints to ensure a valid solution.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Programming
Feasible Region
Objective Function
Formulas
-
Theorems
-
Suitable Grade Level
Advanced Mathematics
Related Recommendation
Solving a Linear Programming Problem with Constraints
Maximize Profit with Linear Programming: Formulation and Constraints
Linear Programming Optimization: Agriculture and Manufacturing
Maximizing Profit for Two Products Using Linear Programming
Optimize Production of Products A, B, and C with Linear Programming Constraints