Math Problem Statement

Diketahui fungsi F dari bilangan rasional ke bilangan rasional dengan aturan F(x) = 3x - 2. Tentukan pasangan atau peta untuk x = -3, -2, -1, 0, 1, 2, dan juga x = 1/2, 3/4, 3/2. Gambarlah grafik fungsi F pada kertas grafik.

Solution

The problem provides a linear function F(x)=3x2F(x) = 3x - 2 and asks for the following:

a. Tentukan pasangan atau peta x=3,2,1,0,1,2x = -3, -2, -1, 0, 1, 2

We need to determine the output of F(x)F(x) for each of these xx-values.

F(3)=3(3)2=92=11F(-3) = 3(-3) - 2 = -9 - 2 = -11 F(2)=3(2)2=62=8F(-2) = 3(-2) - 2 = -6 - 2 = -8 F(1)=3(1)2=32=5F(-1) = 3(-1) - 2 = -3 - 2 = -5 F(0)=3(0)2=02=2F(0) = 3(0) - 2 = 0 - 2 = -2 F(1)=3(1)2=32=1F(1) = 3(1) - 2 = 3 - 2 = 1 F(2)=3(2)2=62=4F(2) = 3(2) - 2 = 6 - 2 = 4

So, the pairs are: (3,11),(2,8),(1,5),(0,2),(1,1),(2,4)(-3, -11), (-2, -8), (-1, -5), (0, -2), (1, 1), (2, 4)

b. Tentukan pula pasangan x=12,34,32x = \frac{1}{2}, \frac{3}{4}, \frac{3}{2}

We need to find F(x)F(x) for the fractional values of xx.

F(12)=3(12)2=322=3242=12F\left(\frac{1}{2}\right) = 3\left(\frac{1}{2}\right) - 2 = \frac{3}{2} - 2 = \frac{3}{2} - \frac{4}{2} = -\frac{1}{2} F(34)=3(34)2=942=9484=14F\left(\frac{3}{4}\right) = 3\left(\frac{3}{4}\right) - 2 = \frac{9}{4} - 2 = \frac{9}{4} - \frac{8}{4} = \frac{1}{4} F(32)=3(32)2=922=9242=52F\left(\frac{3}{2}\right) = 3\left(\frac{3}{2}\right) - 2 = \frac{9}{2} - 2 = \frac{9}{2} - \frac{4}{2} = \frac{5}{2}

So, the pairs are: (12,12),(34,14),(32,52)\left(\frac{1}{2}, -\frac{1}{2}\right), \left(\frac{3}{4}, \frac{1}{4}\right), \left(\frac{3}{2}, \frac{5}{2}\right)

c. Gambar grafik fungsi FF pada kertas grafik

To graph the function F(x)=3x2F(x) = 3x - 2, plot the points calculated in parts (a) and (b), then draw the straight line through these points. Since this is a linear function, the graph will be a straight line with a slope of 3 and a y-intercept of -2.

Would you like a more detailed graph explanation or help with plotting the points?

Relative Questions:

  1. What is the slope of the function F(x)=3x2F(x) = 3x - 2?
  2. How do you interpret the y-intercept in a linear function?
  3. How would the graph change if the function was F(x)=3x+2F(x) = 3x + 2?
  4. Can you find F(x)F(x) for x=12x = -\frac{1}{2}?
  5. What are the key differences between a linear and a quadratic function graph?

Tip:

When plotting linear functions, start with the y-intercept and use the slope to find other points easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Functions
Coordinate Geometry

Formulas

F(x) = 3x - 2

Theorems

Slope-Intercept Form

Suitable Grade Level

Grades 9-10