Math Problem Statement

Given π‘Ž1=βˆ’3 and π‘Ž2=4, what vector is formed by the linear combination π‘Ž1v1+π‘Ž2v2?

π‘Ž1v1+π‘Ž2v2=[]

v2=[βˆ’3βˆ’7]

v1=[8 -7]

Solution

The vector formed by the linear combination a1v1+a2v2a_1 v_1 + a_2 v_2 can be calculated by performing the scalar multiplication of each vector and then adding the results together.

Given:

  • a1=βˆ’3a_1 = -3, a2=4a_2 = 4
  • v1=[8βˆ’7]v_1 = \begin{bmatrix} 8 \\ -7 \end{bmatrix}, v2=[βˆ’3βˆ’7]v_2 = \begin{bmatrix} -3 \\ -7 \end{bmatrix}

Step 1: Multiply each vector by its corresponding scalar

a1v1=βˆ’3Γ—[8βˆ’7]=[βˆ’2421]a_1 v_1 = -3 \times \begin{bmatrix} 8 \\ -7 \end{bmatrix} = \begin{bmatrix} -24 \\ 21 \end{bmatrix}

a2v2=4Γ—[βˆ’3βˆ’7]=[βˆ’12βˆ’28]a_2 v_2 = 4 \times \begin{bmatrix} -3 \\ -7 \end{bmatrix} = \begin{bmatrix} -12 \\ -28 \end{bmatrix}

Step 2: Add the resulting vectors

a1v1+a2v2=[βˆ’2421]+[βˆ’12βˆ’28]=[βˆ’36βˆ’7]a_1 v_1 + a_2 v_2 = \begin{bmatrix} -24 \\ 21 \end{bmatrix} + \begin{bmatrix} -12 \\ -28 \end{bmatrix} = \begin{bmatrix} -36 \\ -7 \end{bmatrix}

Final Answer:

a1v1+a2v2=[βˆ’36βˆ’7]a_1 v_1 + a_2 v_2 = \begin{bmatrix} -36 \\ -7 \end{bmatrix}

Let me know if you want more details or have any questions.

Here are five related questions for further practice:

  1. What is the magnitude of the vector [βˆ’36βˆ’7]\begin{bmatrix} -36 \\ -7 \end{bmatrix}?
  2. What is the dot product of v1v_1 and v2v_2?
  3. If v3=[12]v_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, what is a1v1+a2v2+v3a_1 v_1 + a_2 v_2 + v_3?
  4. What is the angle between v1v_1 and v2v_2?
  5. What happens if a1=a2a_1 = a_2 in the linear combination?

Tip: When adding vectors, always add their corresponding components.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Addition
Scalar Multiplication

Formulas

Linear combination: a1 * v1 + a2 * v2
Vector addition: [x1 + x2, y1 + y2]
Scalar multiplication: c * [x, y] = [c * x, c * y]

Theorems

Properties of Vector Spaces
Distributive Property in Vector Addition

Suitable Grade Level

Grades 9-12