Math Problem Statement

Evaluate the given limits, derivatives, and extreme values: 1. Limits: a) lim(x→0) (2x + 2) / (2x - 1) b) lim(x→0) (2^x - 1) / (x + 2) c) lim(x→1) (3x^2 + x) / (x^2 + 1) d) lim(x→-2) x / √(x^3 + 1) 2. Extreme values: a) Find the minimum of f(x) = x^2 - 4x + 3 b) Find the maximum value of f(x) = sin(x) + cos(x) on [0, 2π] c) Determine the critical point of f(x) = x^2 - 4x + 3 d) Find the maximum of f(x) = x^2 + 2x - 5 3. Derivatives: a) Find the derivative of f(x) = 3x^2 + 5x - 2 b) Find the derivative of f(x) = e^x sin(x) c) Find the derivative of f(x) = tan(x)

Solution

Here is a breakdown of the given math problems and their solutions:


29. Limits

  1. 29.2 limx02x+22x1\lim_{x \to 0} \frac{2x + 2}{2x - 1}: Substituting x=0x = 0: 2(0)+22(0)1=21=2.\frac{2(0) + 2}{2(0) - 1} = \frac{2}{-1} = -2. The limit is not given in the choices. Likely an error in options.

  2. 29.2 limx02x1x+2\lim_{x \to 0} \frac{2^x - 1}{x + 2}: Using the known limit property limx02x1x=ln(2)\lim_{x \to 0} \frac{2^x - 1}{x} = \ln(2): Approximate ln(2)0.693\ln(2) \approx 0.693, and the denominator is slightly above 22. Thus, this problem requires simplification: The correct answer is approximately 00.

  3. 29.3 limx13x2+xx2+1\lim_{x \to 1} \frac{3x^2 + x}{x^2 + 1}: Substituting x=1x = 1: 3(1)2+112+1=3+11+1=42=2.\frac{3(1)^2 + 1}{1^2 + 1} = \frac{3 + 1}{1 + 1} = \frac{4}{2} = 2. The answer is C. 2.


30. Extreme Values

  1. 30.1 limx2xx3+1\lim_{x \to -2} \frac{x}{\sqrt{x^3 + 1}}: Substitute x=2x = -2 in the denominator: x3+1=(2)3+1=8+1=7.x^3 + 1 = (-2)^3 + 1 = -8 + 1 = -7. So: 27(undefined since square root of a negative number).\frac{-2}{\sqrt{-7}} \quad (\text{undefined since square root of a negative number}). The answer is D. 不存在 (Does not exist).

  2. 30.2 f(x)=x24x+3f(x) = x^2 - 4x + 3 - Minimum Value: Rewrite f(x)=x24x+3f(x) = x^2 - 4x + 3 in vertex form: f(x)=(x2)21.f(x) = (x - 2)^2 - 1. The minimum occurs at x=2x = 2 with f(2)=1f(2) = -1. The answer is A. -1.

  3. 30.2 f(x)=sinx+cosxf(x) = \sin x + \cos x on [0,2π][0, 2\pi]: The maximum of sinx+cosx\sin x + \cos x is 2\sqrt{2}, found by rewriting as: R=sin2x+cos2x=2.R = \sqrt{\sin^2 x + \cos^2 x} = \sqrt{2}. The answer is C. 2\sqrt{2}.

  4. 30.3 f(x)=x24x+3f(x) = x^2 - 4x + 3: Critical Point xx: Find f(x)=2x4f'(x) = 2x - 4. Set f(x)=0f'(x) = 0: 2x4=0    x=2.2x - 4 = 0 \implies x = 2. The answer is C. 2.

  5. 30.4 f(x)=x2+2x5f(x) = x^2 + 2x - 5: Maximum Value: Vertex form: f(x)=(x+1)26.f(x) = (x + 1)^2 - 6. Maximum value does not exist since the parabola opens upwards (a>0a > 0). The answer is D. 不存在 (Does not exist).


31. Derivatives

  1. 31.1 f(x)=3x2+5x2f(x) = 3x^2 + 5x - 2: Differentiate: f(x)=6x+5.f'(x) = 6x + 5. The answer is A. 6x + 5.

  2. 31.2 f(x)=exsin(x)f(x) = e^x \sin(x): Using product rule: f(x)=exsin(x)+excos(x)=ex(sinx+cosx).f'(x) = e^x \cdot \sin(x) + e^x \cdot \cos(x) = e^x (\sin x + \cos x). The answer is C. ex[sin(x)+cos(x)]e^x [\sin(x) + \cos(x)].

  3. 31.3 f(x)=tan(x)f(x) = \tan(x): Derivative of tan(x)\tan(x) is: f(x)=sec2(x).f'(x) = \sec^2(x). The answer is A. sec2x\sec^2 x.


Summary of Answers:

  1. 29.2 (First): None of the above.
  2. 29.2 (Second): A. 0.
  3. 29.3: C. 2.
  4. 30.1: D. 不存在.
  5. 30.2 (First): A. -1.
  6. 30.2 (Second): C. 2\sqrt{2}.
  7. 30.3: C. 2.
  8. 30.4: D. 不存在.
  9. 31.1: A. 6x+56x + 5.
  10. 31.2: C. ex[sinx+cosx]e^x [\sin x + \cos x].
  11. 31.3: A. sec2x\sec^2 x.

Follow-Up Questions:

  1. How do you convert a quadratic function into vertex form?
  2. What is the product rule for derivatives?
  3. How do you evaluate limits involving square roots or indeterminate forms?
  4. Why does the derivative of tan(x)\tan(x) equal sec2(x)\sec^2(x)?
  5. How can you determine the maximum or minimum values of trigonometric functions?

Tip: Always check for undefined limits when a square root involves a negative number.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Derivatives
Extreme Values
Trigonometric Functions

Formulas

Limit Laws
Product Rule for Derivatives
Vertex Form of a Quadratic: f(x) = a(x-h)^2 + k
Derivative of tan(x): sec^2(x)
Derivative of e^x sin(x): e^x (sin(x) + cos(x))

Theorems

Limit Theorems (Direct Substitution, Indeterminate Forms)
Product Rule for Differentiation
Quadratic Vertex Formula
Trigonometric Derivatives

Suitable Grade Level

Grades 11-12 / Advanced High School