Math Problem Statement

Solve the math quiz problems provided in the uploaded image.

Solution

I see you've uploaded a math quiz sheet. Let me go through it step-by-step and solve each problem with detailed explanations. I'll transcribe and solve the questions from the image for clarity.


1. Cari turunan dari 3x5x2+7\frac{3x - 5}{x^2 + 7}

This is a derivative of a fraction using the quotient rule:

uv=uvuvv2\frac{u}{v}' = \frac{u'v - uv'}{v^2}

Here, u=3x5u = 3x - 5 and v=x2+7v = x^2 + 7.

  1. u=3u' = 3, v=2xv' = 2x.
  2. Substituting: ddx(3x5x2+7)=(3)(x2+7)(3x5)(2x)(x2+7)2\frac{d}{dx}\left(\frac{3x - 5}{x^2 + 7}\right) = \frac{(3)(x^2 + 7) - (3x - 5)(2x)}{(x^2 + 7)^2}
  3. Simplify the numerator: 3(x2+7)(3x5)(2x)=3x2+216x2+10x=3x2+10x+213(x^2 + 7) - (3x - 5)(2x) = 3x^2 + 21 - 6x^2 + 10x = -3x^2 + 10x + 21
  4. Final result: 3x2+10x+21(x2+7)2\frac{-3x^2 + 10x + 21}{(x^2 + 7)^2}

2. Cari dydy jika y=2x4+1+3xy = \frac{2}{x^4 + 1} + \frac{3}{x}

Here, yy is the sum of two terms, so we find dy/dxdy/dx term by term.

  1. For 2x4+1\frac{2}{x^4 + 1}:

    • Use the chain rule: ddx(2x4+1)=24x3(x4+1)2=8x3(x4+1)2\frac{d}{dx}\left(\frac{2}{x^4 + 1}\right) = -\frac{2 \cdot 4x^3}{(x^4 + 1)^2} = -\frac{8x^3}{(x^4 + 1)^2}
  2. For 3x\frac{3}{x}:

    • This simplifies as: ddx(3x)=3x2\frac{d}{dx}\left(\frac{3}{x}\right) = -\frac{3}{x^2}

Combine the results: dy=8x3(x4+1)23x2dy = -\frac{8x^3}{(x^4 + 1)^2} - \frac{3}{x^2}


3. Cari limit-limit berikut:

a. limt01costsint\lim_{t \to 0} \frac{1 - \cos t}{\sin t}

  1. Apply trigonometric identities:
    • Use 1cost=2sin2(t/2)1 - \cos t = 2\sin^2(t/2): limt01costsint=limt02sin2(t/2)sint\lim_{t \to 0} \frac{1 - \cos t}{\sin t} = \lim_{t \to 0} \frac{2\sin^2(t/2)}{\sin t}
  2. Substituting sin(t)t\sin(t) \approx t for small tt: limt02sin2(t/2)sint=2(1/2)21=0\lim_{t \to 0} \frac{2\sin^2(t/2)}{\sin t} = \frac{2(1/2)^2}{1} = 0

b. limx0sin5x3x\lim_{x \to 0} \frac{\sin 5x}{3x}

  1. Use the small angle approximation sin(5x)5x\sin(5x) \approx 5x: limx0sin5x3x=limx05x3x=53\lim_{x \to 0} \frac{\sin 5x}{3x} = \lim_{x \to 0} \frac{5x}{3x} = \frac{5}{3}

4. Cari dy/dxdy/dx jika 4x2y3y=x314x^2y - 3y = x^3 - 1

Implicit differentiation:

  1. Differentiate both sides: ddx(4x2y3y)=ddx(x31)\frac{d}{dx}(4x^2y - 3y) = \frac{d}{dx}(x^3 - 1)
  2. Product rule for 4x2y4x^2y: 4x2dydx+8xy3dydx=3x24x^2 \frac{dy}{dx} + 8xy - 3\frac{dy}{dx} = 3x^2
  3. Collect terms with dydx\frac{dy}{dx}: (4x23)dydx=3x28xy(4x^2 - 3)\frac{dy}{dx} = 3x^2 - 8xy
  4. Solve for dydx\frac{dy}{dx}: dydx=3x28xy4x23\frac{dy}{dx} = \frac{3x^2 - 8xy}{4x^2 - 3}

5. Optimasi Pagar

Given 100 m of fencing to create two adjacent rectangular pens:

  1. Total length of fencing: 2l+3w=1002l + 3w = 100.
  2. Solve for ll in terms of ww: l=1003w2l = \frac{100 - 3w}{2}.
  3. Area A=lw=(1003w2)wA = lw = \left(\frac{100 - 3w}{2}\right)w: A=50w3w22A = 50w - \frac{3w^2}{2}
  4. Differentiate to find maximum area: dAdw=503w=0    w=503\frac{dA}{dw} = 50 - 3w = 0 \implies w = \frac{50}{3}
  5. Substitute ww back to find ll: l=1003(503)2=25l = \frac{100 - 3\left(\frac{50}{3}\right)}{2} = 25

Dimensions: l=25l = 25, w=503w = \frac{50}{3}.


6. Biaya Minimum

Cost function: C(v)=30+v2v+14xvC(v) = \frac{30 + v^2}{v} + \frac{14x}{v}

  1. Differentiate: dCdv=30+v2v2+2vv14xv2\frac{dC}{dv} = -\frac{30 + v^2}{v^2} + \frac{2v}{v} - \frac{14x}{v^2}
  2. Solve for vv within 40v6040 \leq v \leq 60. I recommend numerical methods to finalize this.

Would you like a deeper breakdown for any part?

Related Questions:

  1. Can we optimize the truck cost problem numerically?
  2. How is implicit differentiation applied in other contexts?
  3. What are typical trigonometric approximations in limits?
  4. How do we maximize other shapes in optimization problems?
  5. How do small angle approximations help in limits?

Tip: Always verify your derivative by substitution or checking boundary conditions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus (Derivatives, Limits)
Implicit Differentiation
Optimization
Algebraic Simplification

Formulas

Quotient Rule: (u/v)' = (u'v - uv') / v^2
Chain Rule for derivatives
Trigonometric identities (e.g., 1 - cos(t) = 2sin^2(t/2))
Area and Perimeter optimization formulas

Theorems

Small angle approximation
Product rule for differentiation
Optimization principles for constrained functions

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)