Math Problem Statement

Evaluate \(\lim_{x \to \infty} \left(x + \frac{1}{x}\right)^x\).

Solution

To solve limx(x+1x)x\lim_{x \to \infty} \left(x + \frac{1}{x}\right)^x, we can use the property of limits involving exponential functions.

First, rewrite the expression:

(x+1x)x=(x(1+1x2))x=xx(1+1x2)x\left(x + \frac{1}{x}\right)^x = \left(x\left(1 + \frac{1}{x^2}\right)\right)^x = x^x \left(1 + \frac{1}{x^2}\right)^x

Now, consider the individual limits:

  1. xxx^x goes to \infty as xx \to \infty.
  2. For (1+1x2)x\left(1 + \frac{1}{x^2}\right)^x, take the natural log:

ln[(1+1x2)x]=xln(1+1x2)\ln\left[\left(1 + \frac{1}{x^2}\right)^x\right] = x \cdot \ln\left(1 + \frac{1}{x^2}\right)

Using the expansion ln(1+u)u\ln(1 + u) \approx u for small uu, we have:

xln(1+1x2)x1x2=1xx \cdot \ln\left(1 + \frac{1}{x^2}\right) \approx x \cdot \frac{1}{x^2} = \frac{1}{x}

As xx \to \infty, 1x0\frac{1}{x} \to 0.

Hence:

limx(1+1x2)x=e0=1\lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x = e^0 = 1

Putting it all together, the dominant term is xxx^x, which results in:

limx(x+1x)x\lim_{x \to \infty} \left(x + \frac{1}{x}\right)^x \to \infty

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Exponential Growth
Logarithms

Formulas

Natural logarithm approximation: \(\ln(1 + u) \approx u\) for small \(u\)
Exponential property: \(e^0 = 1\)

Theorems

Properties of Limits
Logarithmic Expansion

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (AP Calculus)