Math Problem Statement

Evaluate lim_{x → b} (x^b - b^x) / (x^x - b^b).

Solution

The problem asks to evaluate the limit:

limxbxbbxxxbb.\lim_{x \to b} \frac{x^b - b^x}{x^x - b^b}.

Step-by-step solution:

  1. Check the form of the limit:

    When x=bx = b, both the numerator and denominator become 00:

    • Numerator: xbbx=bbbb=0x^b - b^x = b^b - b^b = 0.
    • Denominator: xxbb=bbbb=0x^x - b^b = b^b - b^b = 0.

    Thus, this is a 00\frac{0}{0} indeterminate form, so we can apply L'Hôpital's Rule.


  1. Apply L'Hôpital's Rule:

    L'Hôpital's Rule states that for limits of the form 00\frac{0}{0}, we take the derivatives of the numerator and the denominator.

    limxbxbbxxxbb=limxbddx(xbbx)ddx(xxbb).\lim_{x \to b} \frac{x^b - b^x}{x^x - b^b} = \lim_{x \to b} \frac{\frac{d}{dx}(x^b - b^x)}{\frac{d}{dx}(x^x - b^b)}.

    Now, let’s find the derivatives.


  1. Derivative of the numerator: xbbxx^b - b^x

    • ddx(xb)=bxb1\frac{d}{dx}(x^b) = b \cdot x^{b-1} (using the power rule).
    • ddx(bx)=bxln(b)\frac{d}{dx}(b^x) = b^x \ln(b) (since bxb^x is an exponential function).

    So, the derivative of the numerator is: bxb1bxln(b).b \cdot x^{b-1} - b^x \ln(b).


  1. Derivative of the denominator: xxbbx^x - b^b

    • ddx(xx)=xx(ln(x)+1)\frac{d}{dx}(x^x) = x^x (\ln(x) + 1) (using logarithmic differentiation).
    • ddx(bb)=0\frac{d}{dx}(b^b) = 0 (since it’s a constant).

    So, the derivative of the denominator is: xx(ln(x)+1).x^x (\ln(x) + 1).


  1. Evaluate the limit:

    Now, the limit becomes:

    limxbbxb1bxln(b)xx(ln(x)+1).\lim_{x \to b} \frac{b \cdot x^{b-1} - b^x \ln(b)}{x^x (\ln(x) + 1)}.

    Substituting x=bx = b into this expression:

    • Numerator: bbb1bbln(b)=bbbbln(b)=bb(1ln(b))b \cdot b^{b-1} - b^b \ln(b) = b^b - b^b \ln(b) = b^b (1 - \ln(b)).
    • Denominator: bb(ln(b)+1)b^b (\ln(b) + 1).

    So the limit becomes:

    bb(1ln(b))bb(ln(b)+1)=1ln(b)ln(b)+1.\frac{b^b (1 - \ln(b))}{b^b (\ln(b) + 1)} = \frac{1 - \ln(b)}{\ln(b) + 1}.


  1. Final Answer:

    limxbxbbxxxbb=1ln(b)ln(b)+1.\lim_{x \to b} \frac{x^b - b^x}{x^x - b^b} = \frac{1 - \ln(b)}{\ln(b) + 1}.


Let me know if you want further clarifications or have any questions!


Follow-up Questions:

  1. What is L'Hôpital's Rule, and when can it be applied?
  2. How does logarithmic differentiation work in cases like xxx^x?
  3. What happens to the limit if b=eb = e (the base of natural logarithms)?
  4. Can the limit be solved by series expansion around x=bx = b?
  5. How does the indeterminate form 00\frac{0}{0} appear in other contexts?

Tip: When dealing with limits involving exponential functions, checking for 0/00/0 or /\infty/\infty forms can guide you toward using L'Hôpital's Rule effectively.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
L'Hôpital's Rule
Exponential Functions

Formulas

L'Hôpital's Rule: lim_{x → c} f(x)/g(x) = lim_{x → c} f'(x)/g'(x) when in indeterminate form
Exponential differentiation: d/dx(b^x) = b^x ln(b)
Power rule: d/dx(x^n) = n*x^(n-1)

Theorems

L'Hôpital's Rule
Logarithmic Differentiation

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus