Math Problem Statement
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Limits
L'Hôpital's Rule
Exponential Functions
Formulas
L'Hôpital's Rule: lim_{x → c} f(x)/g(x) = lim_{x → c} f'(x)/g'(x) when in indeterminate form
Exponential differentiation: d/dx(b^x) = b^x ln(b)
Power rule: d/dx(x^n) = n*x^(n-1)
Theorems
L'Hôpital's Rule
Logarithmic Differentiation
Suitable Grade Level
Undergraduate Calculus or Advanced High School Calculus
Related Recommendation
Evaluate the Limit: lim x→0 ((a^x + b^x) / 2)^(1/x)
Evaluate the Limit \( \lim_{x \to 0^+} (1 + x)^{1/x} \) Using L'Hôpital's Rule
Evaluate Limit lim(x → 0) (a^x + x)^(1/x) using L'Hopital's Rule
Approximate the Limit \( \lim_{x \to 0} \frac{3^x - 2^x}{x} \)
Find the Limit of \( \frac{x \cdot 3^x}{3^x - 1} \) using L'Hôpital's Rule