Math Problem Statement

Limit[Divide[1-cos[x]Sqrt[cos[2x]],Square[x]],x->0] solve without derivatives nor approximations

Solution

We need to evaluate the limit:

limx01cosxcos2xx2\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x}}{x^2}

Step 1: Use Trigonometric Approximations

Without derivatives, let's use standard trigonometric identities.

  1. Double-Angle Identity for Cosine:
    cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1

    Taking the square root: cos2x=2cos2x1\sqrt{\cos 2x} = \sqrt{2\cos^2 x - 1}

  2. Cosine Taylor Expansion (up to x2x^2):
    cosx=1x22+O(x4)\cos x = 1 - \frac{x^2}{2} + O(x^4) cos2x=12x2+O(x4)\cos 2x = 1 - 2x^2 + O(x^4)

    So, approximating inside the square root: cos2x=12x2=1x2+O(x4)\sqrt{\cos 2x} = \sqrt{1 - 2x^2} = 1 - x^2 + O(x^4)

  3. Multiply cosx\cos x and cos2x\sqrt{\cos 2x}: cosxcos2x=(1x22)(1x2)\cos x \sqrt{\cos 2x} = \left(1 - \frac{x^2}{2}\right) \cdot \left(1 - x^2\right)

    Expanding: =1x22x2+O(x4)= 1 - \frac{x^2}{2} - x^2 + O(x^4)

    =13x22+O(x4)= 1 - \frac{3x^2}{2} + O(x^4)

  4. Compute 1cosxcos2x1 - \cos x \sqrt{\cos 2x}: 1(13x22+O(x4))=3x22+O(x4)1 - \left(1 - \frac{3x^2}{2} + O(x^4)\right) = \frac{3x^2}{2} + O(x^4)

Step 2: Evaluate the Limit

limx01cosxcos2xx2=limx03x22+O(x4)x2\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x}}{x^2} = \lim_{x \to 0} \frac{\frac{3x^2}{2} + O(x^4)}{x^2}

=limx0(32+O(x2))= \lim_{x \to 0} \left(\frac{3}{2} + O(x^2)\right)

Since O(x2)O(x^2) vanishes as x0x \to 0, the result is:

32\frac{3}{2}

Final Answer:

32\frac{3}{2}

Would you like a deeper breakdown of any step?

Here are five related problems to practice:

  1. limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}
  2. limx0sinxxx3\lim_{x \to 0} \frac{\sin x - x}{x^3}
  3. limx0tanxxx3\lim_{x \to 0} \frac{\tan x - x}{x^3}
  4. limx01cos2xx2\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}
  5. limx01+x1x\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}

Tip:

Using small-angle approximations (cosx1x2/2\cos x \approx 1 - x^2/2, sinxx\sin x \approx x) helps in evaluating limits efficiently without L'Hôpital's Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometry
Taylor Expansion
Cosine Function
Square Roots

Formulas

cos(x) = 1 - x^2/2 + O(x^4)
cos(2x) = 1 - 2x^2 + O(x^4)
sqrt(cos(2x)) = 1 - x^2 + O(x^4)

Theorems

Limit properties
Double-Angle Identity for Cosine

Suitable Grade Level

Grades 11-12