Math Problem Statement

Я знаю, что limn+n+1n=0\lim_{n\to+\infty}\sqrt{n+1}-\sqrt{n}=0. Могу ли я при вычислении предела написать, что n+1n=n+1n=1n+1+n<1n<ϵ\left|\sqrt{n+1}-n\right|=\sqrt{n+1}-n=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}<\epsilon. И если да, то почему?

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Inequalities
Square Roots
Asymptotics

Formulas

$$ \lim_{n\to+\infty}\sqrt{n+1}-\sqrt{n}=0 $$
$$ \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} $$
$$ \frac{1}{\sqrt{n}} < \epsilon $$

Theorems

Limit Theorem
Inequality Handling for Large n

Suitable Grade Level

Undergraduate - Calculus I or II