Math Problem Statement
Я знаю, что . Могу ли я при вычислении предела написать, что . И если да, то почему?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limits
Inequalities
Square Roots
Asymptotics
Formulas
$$ \lim_{n\to+\infty}\sqrt{n+1}-\sqrt{n}=0 $$
$$ \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} $$
$$ \frac{1}{\sqrt{n}} < \epsilon $$
Theorems
Limit Theorem
Inequality Handling for Large n
Suitable Grade Level
Undergraduate - Calculus I or II
Related Recommendation
Evaluate the Limit of sqrt(n^2 + n) - n as n Approaches Infinity
Limit of √(n+1) - √n as n approaches infinity
Limit Calculation of √(4 + n²) - √(n² + 1) as n approaches infinity
Evaluating the Limit \lim_{x \to 0} \sqrt{x^2 + 1} - 1
Evaluate the Limit of \( \frac{\sqrt{n}}{1 + \sqrt{n^3 + n^2 + 3n + 1} - \sqrt{n^3 + 2}} \) as \( n \to +\infty \)