Math Problem Statement

Evaluate the limit \( \lim_{x \to a} \frac{\sin^2(x) - \sin^2(a)}{\ln(x) - \ln(a)} \).

Solution

The problem involves the following limit:

limxasin2(x)sin2(a)ln(x)ln(a).\lim_{x \to a} \frac{\sin^2(x) - \sin^2(a)}{\ln(x) - \ln(a)}.

Step 1: Simplify the numerator

Using the identity sin2(x)sin2(a)=(sin(x)sin(a))(sin(x)+sin(a))\sin^2(x) - \sin^2(a) = (\sin(x) - \sin(a))(\sin(x) + \sin(a)), we rewrite the numerator: sin2(x)sin2(a)=(sin(x)sin(a))(sin(x)+sin(a)).\sin^2(x) - \sin^2(a) = (\sin(x) - \sin(a))(\sin(x) + \sin(a)).

Step 2: Apply L'Hôpital's Rule

Both the numerator and denominator approach 00 as xax \to a, so we can apply L'Hôpital's Rule. First, differentiate the numerator and denominator:

  • Derivative of the numerator: ddx[sin2(x)sin2(a)]=2sin(x)cos(x).\frac{d}{dx}\left[\sin^2(x) - \sin^2(a)\right] = 2\sin(x)\cos(x).

  • Derivative of the denominator: ddx[ln(x)ln(a)]=1x.\frac{d}{dx}\left[\ln(x) - \ln(a)\right] = \frac{1}{x}.

The limit becomes: limxa2sin(x)cos(x)1x=limxa2xsin(x)cos(x).\lim_{x \to a} \frac{2\sin(x)\cos(x)}{\frac{1}{x}} = \lim_{x \to a} 2x\sin(x)\cos(x).

Step 3: Simplify further

Using the double-angle identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x), we rewrite: 2xsin(x)cos(x)=xsin(2x).2x\sin(x)\cos(x) = x\sin(2x).

As xax \to a, substitute x=ax = a: limxaxsin(2x)=asin(2a).\lim_{x \to a} x\sin(2x) = a\sin(2a).

Final Answer:

limxasin2(x)sin2(a)ln(x)ln(a)=asin(2a).\lim_{x \to a} \frac{\sin^2(x) - \sin^2(a)}{\ln(x) - \ln(a)} = a\sin(2a).

Would you like further clarification or additional examples?

Related Questions:

  1. What is L'Hôpital's Rule and when is it applied?
  2. How can trigonometric identities simplify limits?
  3. What happens if a=0a = 0 in this limit?
  4. Can this problem be solved without using L'Hôpital's Rule?
  5. How does the chain rule apply in derivative computations here?

Tip:

Always verify whether the numerator and denominator both approach 00 or ±\pm\infty before applying L'Hôpital's Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Identities
L'Hôpital's Rule
Differentiation

Formulas

\( \sin^2(x) - \sin^2(a) = (\sin(x) - \sin(a))(\sin(x) + \sin(a)) \)
L'Hôpital's Rule: \( \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \), when \( \frac{f(a)}{g(a)} \) is indeterminate.
\( \sin(2x) = 2\sin(x)\cos(x) \)

Theorems

L'Hôpital's Rule
Limit definition of derivatives

Suitable Grade Level

Grades 11-12 (or early college-level calculus)