Math Problem Statement
Diketahui f(x)=|2−x|/x2−4 , maka pernyataan berikut yang benar atau senilai terkait limf(x) dan f(x) adalah
Soal 9Jawaban a. f(2)=1/4
b. limx→2f(x)=−1/4
c. limx→2f(x)=1/4
d. limx→2−−1x+2=−1/4
e. limx→2−1x+2=1/4
f. limx→2+1x+2=1/4
g. f(2)=−1/4
h. limx→2+−1x+2=−1/4
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limits
Absolute Value
Rational Functions
Formulas
f(x) = |2 - x| / (x^2 - 4)
Limit from the left: lim x→2− f(x) = -1/(x+2)
Limit from the right: lim x→2+ f(x) = 1/(x+2)
Theorems
Limit of a function at a point
Factorization of quadratic expressions
One-sided limits
Suitable Grade Level
Grades 11-12
Related Recommendation
Limit Analysis of the Function f(x) = |2x - 4| / (2 - x)
Evaluate One-Sided Limits of f(x) = |x - 2| and Determine Differentiability
Limit of |x - 2| / (x - 2) as x Approaches 2
Evaluating Left and Right Limits of f(x) = |x + 4| as x Approaches −4
Limit of a Rational Function involving Absolute Value | Approaching x = -2