Math Problem Statement

Function $f(x)$ is continuous on the interval $[0,1]$. Then find the value of the limit $\lim _{n \rightarrow \infty} \int_0^1 \frac{n\left(x^2 \sin ^2 x+\cos x\right)}{1+n^2 x^2} d x$ a $\pi$ b $\frac{\pi}{6}$

C $\frac{\pi}{3}$ d $\frac{\pi}{2}$

only answer

Solution

The value of the limit is:

π2\boxed{\frac{\pi}{2}}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
Definite Integrals
Continuity

Formulas

$\lim _{n \rightarrow \infty} \int_0^1 \frac{n(x^2 \sin^2 x + \cos x)}{1 + n^2 x^2} dx$

Theorems

Lebesgue Dominated Convergence Theorem
Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Mathematics