Math Problem Statement

lim x движется к 1/3 ∛(x/ 9 )-1/3

Solution

We want to evaluate:

limx13(x9313).\lim_{x \to \frac{1}{3}} \left(\sqrt[3]{\frac{x}{9}} - \frac{1}{3}\right).

Step 1: Simplify the expression

Let f(x)=x9313f(x) = \sqrt[3]{\frac{x}{9}} - \frac{1}{3}. We are tasked to compute the limit as x13x \to \frac{1}{3}.

The cube root can make direct substitution tricky, so we examine the structure of f(x)f(x) by simplifying it further.

Step 2: Use substitution for cube root

Let u=x9u = \frac{x}{9}. Then, x13x \to \frac{1}{3} corresponds to u139=127u \to \frac{\frac{1}{3}}{9} = \frac{1}{27}. The function becomes:

f(x)=u313.f(x) = \sqrt[3]{u} - \frac{1}{3}.

Step 3: Expand using Taylor series (or Binomial Approximation)

Near u=127u = \frac{1}{27}, the cube root u3\sqrt[3]{u} can be expanded as:

[ \sqrt[3]{u} = \sqrt[3]{\frac{1}{27}} + \frac{1}{3 \cdot \sqrt[3]{\frac{1}{27}^2}} \cdot (u - \frac{1}{27}) + \text{higher-order terms}. ]

Since 1273=13\sqrt[3]{\frac{1}{27}} = \frac{1}{3}, we rewrite:

u31313(13)2(u127)=9(u127).\sqrt[3]{u} - \frac{1}{3} \approx \frac{1}{3 \cdot (\frac{1}{3})^2} (u - \frac{1}{27}) = 9(u - \frac{1}{27}).

Step 4: Back-substitute u=x9u = \frac{x}{9}

Replace uu with x9\frac{x}{9}, and expand the term u127u - \frac{1}{27}:

u127=x9127=3x127.u - \frac{1}{27} = \frac{x}{9} - \frac{1}{27} = \frac{3x - 1}{27}.

Thus, the function simplifies to:

f(x)93x127=3x13.f(x) \approx 9 \cdot \frac{3x - 1}{27} = \frac{3x - 1}{3}.

Step 5: Compute the limit as x13x \to \frac{1}{3}

Substitute x=13x = \frac{1}{3}:

f(x)31313=113=0.f(x) \to \frac{3 \cdot \frac{1}{3} - 1}{3} = \frac{1 - 1}{3} = 0.

Final Answer:

limx13(x9313)=0.\lim_{x \to \frac{1}{3}} \left(\sqrt[3]{\frac{x}{9}} - \frac{1}{3}\right) = 0.


Would you like a detailed explanation of any specific step?

Follow-Up Questions:

  1. Why is Taylor expansion useful for evaluating this limit?
  2. How can the binomial theorem simplify cube root approximations?
  3. What happens if we use L'Hôpital's Rule to evaluate the limit?
  4. How does substituting u=x9u = \frac{x}{9} simplify the problem?
  5. Can you verify this limit numerically for values close to x=13x = \frac{1}{3}?

Tip:

When cube roots or roots of higher degrees appear, approximations like Taylor series can simplify complex limits.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Cube Roots
Taylor Series Expansion

Formulas

Taylor series for f(x) near a point a: f(x) ≈ f(a) + f'(a)(x-a) + higher-order terms
Simplification of cube roots using approximation: ∛u ≈ ∛a + (1/3)(u-a)/(a^2)

Theorems

Limit Properties
Taylor Expansion

Suitable Grade Level

Grades 11-12 or early college