Math Problem Statement
Use the limit comparison test to determine if sum, from, n, equals, 1, to, infinity, of, start fraction, 3, n, start superscript, start fraction, 5, divided by, 2, end fraction, end superscript, plus, 6, divided by, 2, n, cubed, minus, 2, n, squared, plus, 5, end fractionn=1∑∞2n3−2n2+53n25+6 converges or diverges, and justify your answer.
Answer
Attempt 1 out of 10
Apply the comparison test with the series sum, from, n, equals, 1, to, infinity, of, start fraction, 1, divided by, n, to the power p , end fractionn=1∑∞np1 where p, equalsp= . If a, start subscript, n, end subscript, equals, start fraction, 3, n, start superscript, start fraction, 5, divided by, 2, end fraction, end superscript, plus, 6, divided by, 2, n, cubed, minus, 2, n, squared, plus, 5, end fractionan=2n3−2n2+53n25+6 and b, start subscript, n, end subscript, equals, start fraction, 1, divided by, n, to the power p , end fractionbn=np1, then limit, start subscript, n, right arrow, infinity, end subscript, start fraction, a, start subscript, n, end subscript, divided by, b, start subscript, n, end subscript, end fraction, equalsn→∞limbnan= . Since a, start subscript, n, end subscript, comma, b, start subscript, n, end subscript, is greater than, 0an,bn>0 and the limit is a finite and positive (non-zero) number, the limit comparison test applies. sum, from, n, equals, 1, to, infinity, of, start fraction, 1, divided by, n, to the power p , end fractionn=1∑∞np1 convergesdiverges since a p-series will ______ if and only if p < 1 p ≤ 1 p > 1 p ≥ 1. Therefore,sum, from, n, equals, 1, to, infinity, of, start fraction, 3, n, start superscript, start fraction, 5, divided by, 2, end fraction, end superscript, plus, 6, divided by, 2, n, cubed, minus, 2, n, squared, plus, 5, end fractionn=1∑∞2n3−2n2+53n25+6 convergesdiverges.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limit Comparison Test
P-series
Convergence and Divergence of Series
Algebraic Expressions
Formulas
Limit Comparison Test formula
p-series: sum_{n=1}^{∞} 1/n^p
Theorems
Limit Comparison Test
Convergence of p-series
Suitable Grade Level
Grades 11-12
Related Recommendation
Convergence Test for Series with Limit Comparison Test
Convergence of the Series \sum_{n=1}^{\infty} \frac{5^{n+1}}{3^n - 1} Using the Limit Comparison Test
Sum of Infinite Geometric Series 5^(2n+1) / 3^(3n+1)
Determine Convergence of the Series \( \sum_{n=0}^{\infty} \frac{2n + 5}{(n+2)^2 (n+3)^2} \)
Limit Comparison Test for Series Convergence: Example with (n + 3) / (n^3 - 4n + 5)