Math Problem Statement

compute lim x->-inf sqrt9x^2+5x -3x

Solution

We need to compute the following limit:

limx(9x2+5x3x)\lim_{{x \to -\infty}} \left( \sqrt{9x^2 + 5x} - 3x \right)

Step-by-step solution:

  1. Factor the expression inside the square root:

    First, we factor out x2x^2 from the square root term:

    9x2+5x=x2(9+5x)=x9+5x\sqrt{9x^2 + 5x} = \sqrt{x^2(9 + \frac{5}{x})} = |x|\sqrt{9 + \frac{5}{x}}

    Since xx \to -\infty, we know that x=x|x| = -x (because xx is negative). Thus, we get:

    9x2+5x=x9+5x\sqrt{9x^2 + 5x} = -x\sqrt{9 + \frac{5}{x}}

  2. Rewrite the original limit expression:

    Substituting this into the original expression, we have:

    limx(x9+5x3x)\lim_{{x \to -\infty}} \left( -x\sqrt{9 + \frac{5}{x}} - 3x \right)

    Factor out x-x from both terms:

    limxx(9+5x+3)\lim_{{x \to -\infty}} -x\left( \sqrt{9 + \frac{5}{x}} + 3 \right)

  3. Evaluate the limit:

    As xx \to -\infty, 5x0\frac{5}{x} \to 0. So, 9+5x9=3\sqrt{9 + \frac{5}{x}} \to \sqrt{9} = 3. Substituting this in:

    limxx(3+3)=limxx(6)=6x\lim_{{x \to -\infty}} -x(3 + 3) = \lim_{{x \to -\infty}} -x(6) = -6x

    As xx \to -\infty, 6x+-6x \to +\infty.

Thus, the limit is:

limx(9x2+5x3x)=\lim_{{x \to -\infty}} \left( \sqrt{9x^2 + 5x} - 3x \right) = \infty

Would you like a more detailed explanation, or do you have any questions?


Here are some related questions for practice:

  1. Compute limx(4x2+x2x)\lim_{{x \to \infty}} \left( \sqrt{4x^2 + x} - 2x \right).
  2. Evaluate limx(x2+10xx)\lim_{{x \to -\infty}} \left( \sqrt{x^2 + 10x} - x \right).
  3. Find the limit limx(x2+3x+1x)\lim_{{x \to \infty}} \left( \sqrt{x^2 + 3x + 1} - x \right).
  4. Compute limx(16x2+7x4x)\lim_{{x \to -\infty}} \left( \sqrt{16x^2 + 7x} - 4x \right).
  5. Evaluate limx(25x2+2x5x)\lim_{{x \to \infty}} \left( \sqrt{25x^2 + 2x} - 5x \right).

Tip: When solving limits involving square roots and infinity, it often helps to factor out the highest power of xx and simplify the expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Square Roots
Asymptotic Behavior

Formulas

lim_{x \to -\infty} \left( \sqrt{ax^2 + bx} - cx \right)
|x| = -x for x < 0

Theorems

Limit Theorem for Asymptotes
Square Root Simplification

Suitable Grade Level

Grades 11-12