Math Problem Statement

Consider the parametric curve: x(t) = sin(t/4) + cos(t), y(t) = cos(t/4) - sin(t), 0 ≤ t ≤ π/2. (a) Give an integral that represents the length of the curve. (b) Give an integral that represents the area of the surface obtained when this curve is revolved around the y-axis.

Solution

To solve these problems based on the parametric curve:

x(t)=sin(t4)+cos(t),y(t)=cos(t4)sin(t),0tπ2,x(t) = \sin\left(\frac{t}{4}\right) + \cos(t), \quad y(t) = \cos\left(\frac{t}{4}\right) - \sin(t), \quad 0 \leq t \leq \frac{\pi}{2},

we need to set up the appropriate integrals for:

  1. The length of the curve.
  2. The surface area obtained when the curve is revolved around the yy-axis.

(a) Length of the curve

The formula for the length of a parametric curve x(t),y(t)x(t), y(t) over an interval [a,b][a, b] is:

s=ab(dxdt)2+(dydt)2dt.s = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt.

Steps:

  1. Find dxdt\frac{dx}{dt}: Differentiate x(t)=sin(t4)+cos(t)x(t) = \sin\left(\frac{t}{4}\right) + \cos(t): dxdt=14cos(t4)sin(t).\frac{dx}{dt} = \frac{1}{4} \cos\left(\frac{t}{4}\right) - \sin(t).

  2. Find dydt\frac{dy}{dt}: Differentiate y(t)=cos(t4)sin(t)y(t) = \cos\left(\frac{t}{4}\right) - \sin(t): dydt=14sin(t4)cos(t).\frac{dy}{dt} = -\frac{1}{4} \sin\left(\frac{t}{4}\right) - \cos(t).

  3. Square and add the derivatives: (dxdt)2+(dydt)2=(14cos(t4)sin(t))2+(14sin(t4)cos(t))2.\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \left( \frac{1}{4} \cos\left(\frac{t}{4}\right) - \sin(t) \right)^2 + \left( -\frac{1}{4} \sin\left(\frac{t}{4}\right) - \cos(t) \right)^2.

  4. Integrate: Substitute this expression into the length formula:

s=0π2(14cos(t4)sin(t))2+(14sin(t4)cos(t))2dt.s = \int_0^{\frac{\pi}{2}} \sqrt{\left( \frac{1}{4} \cos\left(\frac{t}{4}\right) - \sin(t) \right)^2 + \left( -\frac{1}{4} \sin\left(\frac{t}{4}\right) - \cos(t) \right)^2} \, dt.


(b) Surface area of revolution around the yy-axis

The formula for the surface area of a parametric curve x(t),y(t)x(t), y(t) revolved around the yy-axis is:

S=ab2πx(t)(dxdt)2+(dydt)2dt.S = \int_a^b 2\pi x(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt.

Steps:

  1. From part (a), we already have the expression for: (dxdt)2+(dydt)2.\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}.

  2. The function x(t)x(t) is given as x(t)=sin(t4)+cos(t)x(t) = \sin\left(\frac{t}{4}\right) + \cos(t).

  3. Integrate: Substitute into the surface area formula:

S=0π22π(sin(t4)+cos(t))(14cos(t4)sin(t))2+(14sin(t4)cos(t))2dt.S = \int_0^{\frac{\pi}{2}} 2\pi \left( \sin\left(\frac{t}{4}\right) + \cos(t) \right) \sqrt{\left( \frac{1}{4} \cos\left(\frac{t}{4}\right) - \sin(t) \right)^2 + \left( -\frac{1}{4} \sin\left(\frac{t}{4}\right) - \cos(t) \right)^2} \, dt.


Final Answers:

  1. Curve length integral (a): s=0π2(14cos(t4)sin(t))2+(14sin(t4)cos(t))2dt.s = \int_0^{\frac{\pi}{2}} \sqrt{\left( \frac{1}{4} \cos\left(\frac{t}{4}\right) - \sin(t) \right)^2 + \left( -\frac{1}{4} \sin\left(\frac{t}{4}\right) - \cos(t) \right)^2} \, dt.

  2. Surface area around the yy-axis (b): S=0π22π(sin(t4)+cos(t))(14cos(t4)sin(t))2+(14sin(t4)cos(t))2dt.S = \int_0^{\frac{\pi}{2}} 2\pi \left( \sin\left(\frac{t}{4}\right) + \cos(t) \right) \sqrt{\left( \frac{1}{4} \cos\left(\frac{t}{4}\right) - \sin(t) \right)^2 + \left( -\frac{1}{4} \sin\left(\frac{t}{4}\right) - \cos(t) \right)^2} \, dt.


Follow-Up Questions:

  1. How do you compute derivatives of parametric equations?
  2. What is the general formula for the length of a parametric curve?
  3. How do you derive the surface area for a curve revolved around the xx- or yy-axis?
  4. Can you calculate these integrals numerically?
  5. What are the applications of parametric curves in physics or engineering?

Tip: Always differentiate parametric equations carefully and substitute into formulas step by step to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric equations
Curve length
Surface area of revolution
Integral calculus

Formulas

Curve length: s = ∫ sqrt((dx/dt)^2 + (dy/dt)^2) dt
Surface area: S = ∫ 2π x(t) sqrt((dx/dt)^2 + (dy/dt)^2) dt

Theorems

Parametric representation of curves
Surface area of revolution formula

Suitable Grade Level

College-level Calculus