Math Problem Statement

Use sigma notation to write the following left Riemann sum.​ Then, evaluate the left Riemann sum using a calculator. ​f(x)equalse Superscript x on left bracket 0 comma ln 10 right bracket with n equals 30 Question content area bottom Part 1 Write the left Riemann sum using sigma notation. Choose the correct choice below. A.Summation from k equals 1 to 30 e Superscript x Baseline times StartFraction ln 10 Over 30 EndFraction Summation from k equals 1 to 30 e Superscript x Baseline times StartFraction ln 10 Over 30 EndFraction B.Summation from k equals 1 to 30 e Superscript left parenthesis k minus one half right parenthesis left parenthesis StartFraction ln 10 Over 30 EndFraction right parenthesis Baseline times StartFraction ln 10 Over 30 EndFraction Summation from k equals 1 to 30 e Superscript left parenthesis k minus one half right parenthesis left parenthesis StartFraction ln 10 Over 30 EndFraction right parenthesis Baseline times StartFraction ln 10 Over 30 EndFraction C.Summation from k equals 1 to 30 e Superscript left parenthesis k right parenthesis left parenthesis StartFraction ln 10 Over 30 EndFraction right parenthesis Baseline times StartFraction ln 10 Over 30 EndFraction Summation from k equals 1 to 30 e Superscript left parenthesis k right parenthesis left parenthesis StartFraction ln 10 Over 30 EndFraction right parenthesis Baseline times StartFraction ln 10 Over 30 EndFraction D.Summation from k equals 1 to 30 e Superscript left parenthesis k minus 1 right parenthesis left parenthesis StartFraction ln 10 Over 30 EndFraction right parenthesis Baseline times StartFraction ln 10 Over 30 EndFraction Summation from k equals 1 to 30 e Superscript left parenthesis k minus 1 right parenthesis left parenthesis StartFraction ln 10 Over 30 EndFraction right parenthesis Baseline times StartFraction ln 10 Over 30 EndFraction Your answer is correct. Part 2 The left Riemann sum is    enter your response here. ​(Type an integer or decimal rounded to three decimal places as​ needed.)

Solution

To write the left Riemann sum using sigma notation for the function f(x)=exf(x) = e^x over the interval [0,ln10][0, \ln 10] with n=30n = 30, we proceed as follows:

Part 1: Sigma Notation

  1. Interval Width: Δx=ln100n=ln1030\Delta x = \frac{\ln 10 - 0}{n} = \frac{\ln 10}{30}

  2. Left Endpoint: The left endpoint of each subinterval can be expressed as: xk=0+(k1)Δx=(k1)ln1030x_k = 0 + (k-1) \Delta x = (k-1) \frac{\ln 10}{30}

  3. Left Riemann Sum: Thus, the left Riemann sum in sigma notation is: Ln=k=130f(xk)Δx=k=130e(k1)ln1030ln1030L_n = \sum_{k=1}^{30} f(x_k) \Delta x = \sum_{k=1}^{30} e^{(k-1) \frac{\ln 10}{30}} \cdot \frac{\ln 10}{30}

    Therefore, the correct choice is: D. k=130e(k1)ln1030ln1030\sum_{k=1}^{30} e^{(k-1) \frac{\ln 10}{30}} \cdot \frac{\ln 10}{30}

Part 2: Evaluating the Left Riemann Sum

Now, let's evaluate this sum:

Ln=k=130e(k1)ln1030ln1030L_n = \sum_{k=1}^{30} e^{(k-1) \frac{\ln 10}{30}} \cdot \frac{\ln 10}{30}

Evaluation Steps

  1. Calculate Δx\Delta x: Δx=ln10302.302585300.0767528\Delta x = \frac{\ln 10}{30} \approx \frac{2.302585}{30} \approx 0.0767528

  2. Calculate the sum: The term e(k1)ln1030e^{(k-1) \frac{\ln 10}{30}} simplifies to 10k13010^{\frac{k-1}{30}}.

  3. Substitute into the sum: Ln=ln1030k=13010k130L_n = \frac{\ln 10}{30} \sum_{k=1}^{30} 10^{\frac{k-1}{30}}

  4. Evaluate the geometric series: This is a geometric series with:

    • First term a=100=1a = 10^{0} = 1
    • Common ratio r=10130r = 10^{\frac{1}{30}}
    • Number of terms n=30n = 30

    The sum of the geometric series is given by: Sn=a1rn1rS_n = a \frac{1 - r^n}{1 - r} Substituting the values: S30=11(10130)30110130=110110130S_{30} = 1 \cdot \frac{1 - (10^{\frac{1}{30}})^{30}}{1 - 10^{\frac{1}{30}}} = \frac{1 - 10}{1 - 10^{\frac{1}{30}}}

    Therefore: Ln=ln1030110110130=ln10(9)30(110130)L_n = \frac{\ln 10}{30} \cdot \frac{1 - 10}{1 - 10^{\frac{1}{30}}} = \frac{\ln 10 \cdot (-9)}{30(1 - 10^{\frac{1}{30}})}

Numerical Calculation

Now, you can use a calculator to evaluate this expression to find the left Riemann sum LnL_n.

After calculating the above expression, you should round your answer to three decimal places.

Summary

  1. Sigma Notation: k=130e(k1)ln1030ln1030\sum_{k=1}^{30} e^{(k-1) \frac{\ln 10}{30}} \cdot \frac{\ln 10}{30}
  2. Evaluate LnL_n using the provided formula.

Would you like any specific calculations done or further explanations? Here are some related questions you might find interesting:

  1. What is the interpretation of the Riemann sum in this context?
  2. How does increasing nn affect the accuracy of the Riemann sum?
  3. What is the difference between left and right Riemann sums?
  4. How do you evaluate a Riemann sum for a different function?
  5. What are the applications of Riemann sums in real-world scenarios?

Tip: Always check the convergence of your series by comparing it with an integral, especially for large nn.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Riemann Sums
Exponential Functions

Formulas

Left Riemann Sum: L_n = ∑ (f(x_k) * Δx)
Exponential Function: f(x) = e^x
Interval Width: Δx = (b - a) / n

Theorems

Riemann Sum Approximation

Suitable Grade Level

Grades 11-12, College Calculus