Math Problem Statement
Un Comité d’Entreprise offre pour Noël aux enfants du personnel des caisses de cubes de construction multicolores. Il dispose d’un stock de caisses identiques dont les dimensions sont 685 mm de largeur, 411 mm de hauteur et 411 mm de profondeur. Le but est de fabriquer des cubes de même taille les plus grands possibles, qui remplissent entièrement les caisses (il ne doit pas rester d’espace). Quelle est la taille de ces cubes et combien les caisses contiennent-elles de tels cubes ?
Solution
To solve the problem:
- Dimensions of the box: 685 mm (length), 411 mm (width), 411 mm (height).
- The goal is to find the largest cube size that can fit evenly into the box without leaving any space.
Step 1: Determine the largest cube size
To find the largest cube size, we compute the greatest common divisor (GCD) of the three dimensions:
- Dimensions: 685, 411, 411.
Finding the GCD:
- GCD(685, 411) = 137
- GCD(137, 411) = 137
Thus, the largest cube size is 137 mm.
Step 2: Number of cubes in the box
The number of cubes along each dimension:
- Length:
- Width:
- Height:
Total number of cubes:
Final Answer:
- The size of each cube is 137 mm.
- The total number of cubes that fit in one box is 45.
Let me know if you need further clarification or details!
Related Questions:
- How is the GCD used in determining cube sizes for such problems?
- What happens if the dimensions are not divisible by the same number?
- Could a rectangular prism be used instead of a cube to optimize filling?
- How would the result change if one box dimension were slightly altered?
- How can this concept apply to 3D packing in logistics?
Tip:
Always check for the greatest common divisor (GCD) when fitting identical units into a larger space!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Greatest Common Divisor (GCD)
Volume Calculation
Divisibility
Formulas
GCD(a, b)
Volume = length × width × height
Number of units = dimension / cube size
Theorems
Euclid's Algorithm for GCD
Suitable Grade Level
Grades 8-10