Math Problem Statement

Find the Laplace transform of the piecewise function f(t), where f(t) = e^(-t) for 0 <= t < 1 and f(t) = e^(-2t) for t >= 1.

Solution

To find the Laplace transform of the piecewise function f(t)f(t), we need to handle it in segments:

  1. Function Definition: \begin{cases} e^{-t}, & 0 \leq t < 1, \\ e^{-2t}, & t \geq 1. \end{cases}$$
  2. Laplace Transform Formula: The Laplace transform of a function f(t)f(t) is defined as: L{f(t)}=0f(t)estdt.\mathcal{L}\{f(t)\} = \int_0^{\infty} f(t) e^{-st} \, dt.

Splitting the Integral:

We split the Laplace transform into two integrals based on the piecewise definition of f(t)f(t): L{f(t)}=01etestdt+1e2testdt.\mathcal{L}\{f(t)\} = \int_0^1 e^{-t} e^{-st} \, dt + \int_1^\infty e^{-2t} e^{-st} \, dt.

Solve Each Integral:

1. For 0t<10 \leq t < 1:

01etestdt=01e(s+1)tdt.\int_0^1 e^{-t} e^{-st} \, dt = \int_0^1 e^{-(s+1)t} \, dt. Using the integral formula eaxdx=1aeax+C\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C: 01e(s+1)tdt=[e(s+1)t(s+1)]01=1s+1(1e(s+1)).\int_0^1 e^{-(s+1)t} \, dt = \left[ \frac{e^{-(s+1)t}}{-(s+1)} \right]_0^1 = \frac{1}{s+1} (1 - e^{-(s+1)}).

2. For t1t \geq 1:

1e2testdt=1e(s+2)tdt.\int_1^\infty e^{-2t} e^{-st} \, dt = \int_1^\infty e^{-(s+2)t} \, dt. Using the same formula: 1e(s+2)tdt=[e(s+2)t(s+2)]1.\int_1^\infty e^{-(s+2)t} \, dt = \left[ \frac{e^{-(s+2)t}}{-(s+2)} \right]_1^\infty. At t=t = \infty, e(s+2)t0e^{-(s+2)t} \to 0. At t=1t = 1: 1e(s+2)tdt=e(s+2)s+2.\int_1^\infty e^{-(s+2)t} \, dt = \frac{e^{-(s+2)}}{s+2}.

Combine Results:

Adding the results of the two integrals: L{f(t)}=1s+1(1e(s+1))+e(s+2)s+2.\mathcal{L}\{f(t)\} = \frac{1}{s+1} (1 - e^{-(s+1)}) + \frac{e^{-(s+2)}}{s+2}.

This is the Laplace transform of the given piecewise function.


Do you want a step-by-step derivation for any specific part? Let me know!

Related Questions:

  1. How does the Laplace transform handle piecewise functions in general?
  2. Can we use the Heaviside function to simplify the piecewise Laplace transform process?
  3. What are the implications of changing the boundaries in the Laplace transform?
  4. How does the Laplace transform help in solving differential equations involving such functions?
  5. What happens to the Laplace transform when ss \to \infty?

Tip: Always verify continuity and smoothness at the transition points of piecewise functions to avoid miscalculations in transforms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Piecewise Functions
Integration

Formulas

Laplace transform: L{f(t)} = ∫_0^∞ f(t) e^(-st) dt
Exponential integral formula: ∫ e^(ax) dx = (1/a) e^(ax) + C

Theorems

Laplace Transform Definition
Piecewise Integration

Suitable Grade Level

Undergraduate (Calculus/Differential Equations)