Math Problem Statement

asnwer

Find the Laplace transform of \( \int_0^t u \sin 2u \, du \)

Solution

To solve this problem, we need to find the Laplace transform of the integral:

L{0tusin2udu}L\left\{ \int_0^t u \sin 2u \, du \right\}

Solution Steps

  1. Recognize the Laplace Transform Property: For an integral of the form F(t)=0tf(u)duF(t) = \int_0^t f(u) \, du, the Laplace transform L{F(t)}=L{f(t)}sL\{F(t)\} = \frac{L\{f(t)\}}{s}.

  2. Set up the function f(u)=usin2uf(u) = u \sin 2u: We need the Laplace transform of usin2uu \sin 2u, which we denote as L{usin2u}L\{u \sin 2u\}.

  3. Use the Laplace Transform of tsin(at)t \sin(at): The Laplace transform L{tsin(at)}=2as(s2+a2)2L\{t \sin(at)\} = \frac{2a s}{(s^2 + a^2)^2}.

    Here, a=2a = 2, so the transform of usin2uu \sin 2u is: L{usin2u}=4s(s2+4)2L\{u \sin 2u\} = \frac{4s}{(s^2 + 4)^2}

  4. Apply the Integral Property: Since F(t)=0tusin2uduF(t) = \int_0^t u \sin 2u \, du, we divide by ss: L{0tusin2udu}=4s(s2+4)2s=4ss(s2+4)2L\left\{ \int_0^t u \sin 2u \, du \right\} = \frac{\frac{4s}{(s^2 + 4)^2}}{s} = \frac{4s}{s(s^2 + 4)^2}

  5. Simplify: This simplifies to: 4(s2+4)2\frac{4}{(s^2 + 4)^2}

Conclusion

The correct answer is (c) 4(s2+4)2\frac{4}{(s^2 + 4)^2}.


Do you want more details or have any questions?

Here are some related questions for further practice:

  1. How would you find the Laplace transform of 0tt2cos(3t)dt\int_0^t t^2 \cos(3t) \, dt?
  2. What is the Laplace transform of t2sin(5t)t^2 \sin(5t)?
  3. How can we use Laplace transforms to solve differential equations with integrals?
  4. What is the Laplace transform of 0te3ucos(u)du\int_0^t e^{3u} \cos(u) \, du?
  5. How do you derive the Laplace transform formula for tsin(at)t \sin(at)?

Tip: Remember that the Laplace transform of an integral can be simplified by dividing by ss after transforming the inner function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transforms
Integration
Sine Function

Formulas

Laplace transform of an integral: \( L\{ \int_0^t f(u) \, du \} = \frac{L\{f(t)\}}{s} \)
Laplace transform of \( t \sin(at) \): \( \frac{2a s}{(s^2 + a^2)^2} \)

Theorems

Laplace Transform Properties
Integral Property of Laplace Transforms

Suitable Grade Level

University level (Calculus and Differential Equations)