Math Problem Statement

Find the laplace transform of cosht 0t ⁣eucoshudu\int_0^{t}\!e^{u}\,\cos hu\,\mathrm{du}

Solution

Let's find the Laplace transform of the given function:

f(t)=0teucosh(u)duf(t) = \int_0^{t} e^u \cosh(u) \, du

Step 1: Solve the integral

The integrand is eucosh(u)e^u \cosh(u), which simplifies as follows:

Recall that cosh(u)=eu+eu2\cosh(u) = \frac{e^u + e^{-u}}{2}, so:

eucosh(u)=eu(eu+eu2)=e2u+12e^u \cosh(u) = e^u \left( \frac{e^u + e^{-u}}{2} \right) = \frac{e^{2u} + 1}{2}

Thus, the integral becomes:

f(t)=0te2u+12duf(t) = \int_0^{t} \frac{e^{2u} + 1}{2} \, du

Now, let's evaluate the integral term-by-term:

0te2u2du=12e2u20t=e2t14\int_0^{t} \frac{e^{2u}}{2} \, du = \frac{1}{2} \cdot \frac{e^{2u}}{2} \bigg|_0^t = \frac{e^{2t} - 1}{4}

0t12du=t2\int_0^{t} \frac{1}{2} \, du = \frac{t}{2}

Thus, the result of the integral is:

f(t)=e2t14+t2f(t) = \frac{e^{2t} - 1}{4} + \frac{t}{2}

Step 2: Find the Laplace transform of f(t)f(t)

Now, we take the Laplace transform of f(t)=e2t14+t2f(t) = \frac{e^{2t} - 1}{4} + \frac{t}{2}.

Laplace transform of e2t14\frac{e^{2t} - 1}{4}:

The Laplace transform of eate^{at} is 1sa\frac{1}{s - a}, so:

L{e2t}=1s2\mathcal{L}\left\{ e^{2t} \right\} = \frac{1}{s - 2}

The Laplace transform of a constant (in this case, -1) is 1s\frac{1}{s}, so:

L{e2t14}=14(1s21s)\mathcal{L}\left\{ \frac{e^{2t} - 1}{4} \right\} = \frac{1}{4} \left( \frac{1}{s - 2} - \frac{1}{s} \right)

Laplace transform of t2\frac{t}{2}:

The Laplace transform of tt is 1s2\frac{1}{s^2}, so:

L{t2}=12s2\mathcal{L}\left\{ \frac{t}{2} \right\} = \frac{1}{2s^2}

Step 3: Combine the results

Now, combine all the Laplace transforms:

L{f(t)}=14(1s21s)+12s2\mathcal{L}\{ f(t) \} = \frac{1}{4} \left( \frac{1}{s - 2} - \frac{1}{s} \right) + \frac{1}{2s^2}

Thus, the Laplace transform of 0teucosh(u)du\int_0^{t} e^u \cosh(u) \, du is:

L{f(t)}=14(1s21s)+12s2\boxed{\mathcal{L}\{ f(t) \} = \frac{1}{4} \left( \frac{1}{s - 2} - \frac{1}{s} \right) + \frac{1}{2s^2}}

Would you like more details or have any further questions?

Here are 5 related questions:

  1. What is the Laplace transform of cosh(t)\cosh(t)?
  2. How would you find the Laplace transform of etsin(t)e^t \sin(t)?
  3. What is the Laplace transform of tnt^n for a general nn?
  4. How do you compute the inverse Laplace transform of a rational function?
  5. What are the basic properties of the Laplace transform?

Tip: The linearity of the Laplace transform makes it much easier to break down complex functions into simpler terms to transform individually!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Integral Calculus
Hyperbolic Functions

Formulas

Laplace transform of e^{at}: \mathcal{L}\{e^{at}\} = \frac{1}{s-a}
Laplace transform of t: \mathcal{L}\{t\} = \frac{1}{s^2}
Integral of e^u\cosh(u): \int e^u\cosh(u)\, du = \frac{e^{2u} + 1}{2}

Theorems

Linearity of the Laplace Transform
Properties of Hyperbolic Functions

Suitable Grade Level

Undergraduate Mathematics