Math Problem Statement
Use o método dos multiplicadores de Lagrange para achar o mínimo da função f(x,y,z)=2xy+6yz+8xz com a condição XYZ=12000
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Optimization
Multivariable Calculus
Lagrange Multipliers
Formulas
Lagrange function: \( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z) \)
Constraint: \( g(x, y, z) = xyz - 12000 \)
Theorems
Method of Lagrange Multipliers
Suitable Grade Level
Undergraduate (Calculus Level)
Related Recommendation
Minimizing f(x,y,z)=2xy+6yz+8xz with Lagrange Multipliers and Constraint XYZ=12000
Maximize and Minimize f(x, y, z) = xyz using Lagrange Multipliers with Constraint x^2 + 2y^2 + 3z^2 = 96
Maximize and Minimize xy^2z with Lagrange Multipliers under Constraint x^2 + y^2 + z^2 = 36
Optimization of f(x, y, z) = 3x + 2y + 4z with Constraint x^2 + 2y^2 + 6z^2 = 81
Find Minimum of f(x, y, z) = x^2 + y^2 + z^2 with Constraints Using Lagrange Multipliers