Math Problem Statement

Una carga q = -2 µC se libera del reposo cuando está a 2 m de una carga fija Q = 6 µC. ¿Cuál es la energía cinética de q cuando está a 1 m de Q?

Solution

This problem involves electric potential energy and conservation of energy principles in an electrostatic context. Let's break it down and solve:


Problem:

  • q=2μC=2×106Cq = -2 \, \mu C = -2 \times 10^{-6} \, C
  • Q=6μC=6×106CQ = 6 \, \mu C = 6 \times 10^{-6} \, C
  • Initial distance from QQ: r1=2mr_1 = 2 \, m
  • Final distance from QQ: r2=1mr_2 = 1 \, m

Goal: Find the kinetic energy of charge qq at r2=1mr_2 = 1 \, m.


Method:

  1. Use Conservation of Energy: Initial Potential Energy+Initial Kinetic Energy=Final Potential Energy+Final Kinetic Energy.\text{Initial Potential Energy} + \text{Initial Kinetic Energy} = \text{Final Potential Energy} + \text{Final Kinetic Energy}. Since qq starts from rest, its initial kinetic energy is zero: U1=U2+K.U_1 = U_2 + K. The kinetic energy at r2r_2 is then: K=U1U2.K = U_1 - U_2.

  2. Calculate the Potential Energy: The potential energy between two charges is: U=keqQr,U = k_e \frac{qQ}{r}, where ke=9×109N\cdotpm2/C2k_e = 9 \times 10^9 \, \text{N·m}^2/\text{C}^2 (Coulomb constant).

    • Initial Potential Energy: U1=keqQr1.U_1 = k_e \frac{qQ}{r_1}.

    • Final Potential Energy: U2=keqQr2.U_2 = k_e \frac{qQ}{r_2}.

  3. Find the Kinetic Energy: Subtract U2U_2 from U1U_1: K=keqQ(1r11r2).K = k_e qQ \left(\frac{1}{r_1} - \frac{1}{r_2}\right).


Solution:

  1. Plug in the values: q=2×106C,Q=6×106C,r1=2m,r2=1m.q = -2 \times 10^{-6} \, C, \quad Q = 6 \times 10^{-6} \, C, \quad r_1 = 2 \, m, \quad r_2 = 1 \, m.

  2. Compute KK: K=(9×109)(2×106)(6×106)(1211).K = (9 \times 10^9) \cdot (-2 \times 10^{-6}) \cdot (6 \times 10^{-6}) \cdot \left(\frac{1}{2} - \frac{1}{1}\right).

  3. Simplify: K=(9×109)(12×1012)(121).K = (9 \times 10^9) \cdot (-12 \times 10^{-12}) \cdot \left(\frac{1}{2} - 1\right). K=(9×109)(12×1012)(12).K = (9 \times 10^9) \cdot (-12 \times 10^{-12}) \cdot \left(-\frac{1}{2}\right). K=(9×109)6×1012.K = (9 \times 10^9) \cdot 6 \times 10^{-12}. K=54×103=0.054J.K = 54 \times 10^{-3} = 0.054 \, \text{J}.


Final Answer:

The kinetic energy of qq at r=1mr = 1 \, m is: K=0.054J.K = 0.054 \, \text{J}.


Would you like me to provide more details or analyze further? Here are 5 related questions:

  1. How is the direction of motion determined in problems with positive and negative charges?
  2. What would happen to the result if qq were positive?
  3. How do you derive the formula for potential energy between charges?
  4. What is the physical significance of the change in potential energy?
  5. How would the result differ if QQ were a different charge distribution (e.g., a ring)?

Tip: Always double-check the sign of charges when dealing with potential energy, as it determines whether the force is attractive or repulsive!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Electrostatics
Conservation of Energy
Electric Potential Energy

Formulas

U = k_e * (q * Q) / r
K = U1 - U2
k_e = 9 * 10^9 N·m²/C²

Theorems

Law of Conservation of Energy

Suitable Grade Level

Undergraduate Physics or Advanced High School Physics