Math Problem Statement

Let L: R^3 -> R^3 be the linear transformation given by the matrix A = [[0, 3, 1], [2, -1, 4], [2, -7, 2]]. Find the kernel (null space) of L.

Solution

To find the kernel (null space) of the linear transformation L:R3R3L: \mathbb{R}^3 \to \mathbb{R}^3 represented by the matrix

A=[031214272],A = \begin{bmatrix} 0 & 3 & 1 \\ 2 & -1 & 4 \\ 2 & -7 & 2 \end{bmatrix},

we need to find all vectors x=[x1x2x3]R3\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 such that

Ax=0.A \mathbf{x} = \mathbf{0}.

This corresponds to solving the homogeneous system of linear equations:

[031214272][x1x2x3]=[000].\begin{bmatrix} 0 & 3 & 1 \\ 2 & -1 & 4 \\ 2 & -7 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.

Let's solve this by performing row reduction on the augmented matrix:

[031021402720].\left[ \begin{array}{ccc|c} 0 & 3 & 1 & 0 \\ 2 & -1 & 4 & 0 \\ 2 & -7 & 2 & 0 \end{array} \right].

Row Reduction Steps:

  1. Interchange row 1 and row 2 to get a leading 1 in the first row: [214003102720].\left[ \begin{array}{ccc|c} 2 & -1 & 4 & 0 \\ 0 & 3 & 1 & 0 \\ 2 & -7 & 2 & 0 \end{array} \right].

  2. Replace row 3 with (row 3 - row 1): [214003100620].\left[ \begin{array}{ccc|c} 2 & -1 & 4 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & -6 & -2 & 0 \end{array} \right].

  3. Replace row 3 with (row 3 + 2 * row 2): [214003100000].\left[ \begin{array}{ccc|c} 2 & -1 & 4 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].

  4. Normalize row 2 by dividing it by 3: [2140011300000].\left[ \begin{array}{ccc|c} 2 & -1 & 4 & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].

  5. Replace row 1 with (row 1 + row 2): [201030011300000].\left[ \begin{array}{ccc|c} 2 & 0 & \frac{10}{3} & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].

  6. Normalize row 1 by dividing by 2: [10530011300000].\left[ \begin{array}{ccc|c} 1 & 0 & \frac{5}{3} & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].

The reduced row echelon form shows that the system has a free variable. Let's express the solutions:

Let x3=λx_3 = \lambda (a free parameter), then:

x2=13x3=13λ,x1=53x3=53λ.x_2 = -\frac{1}{3} x_3 = -\frac{1}{3} \lambda, \quad x_1 = -\frac{5}{3} x_3 = -\frac{5}{3} \lambda.

Thus, the solution set for the kernel is:

Ker(L)={λ[53131]:λR}.\text{Ker}(L) = \left\{ \lambda \begin{bmatrix} -\frac{5}{3} \\ -\frac{1}{3} \\ 1 \end{bmatrix} : \lambda \in \mathbb{R} \right\}.

Simplifying, we have:

Ker(L)={λ[13213]:λR}.\text{Ker}(L) = \left\{ \lambda \begin{bmatrix} -\frac{13}{2} \\ -1 \\ 3 \end{bmatrix} : \lambda \in \mathbb{R} \right\}.

This matches the given answer (up to a scaling factor).

Would you like more details on any specific step, or do you have any questions?

Related Questions:

  1. What is the geometric interpretation of the kernel of a linear transformation?
  2. How can we find the image (range) of the linear transformation given by matrix AA?
  3. How does the rank-nullity theorem relate to the dimensions of the kernel and range?
  4. What is the significance of the free variables in the solution of a homogeneous linear system?
  5. How do we interpret the solution of a linear system when the reduced matrix has zero rows?

Tip: When finding the kernel of a matrix, always check for free variables to understand the dimension of the solution space.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Transformations
Kernel (Null Space)

Formulas

Ax = 0 (Matrix equation to find the null space)
Row reduction to reduced row echelon form (RREF)

Theorems

Rank-Nullity Theorem (dim(Kernel) + dim(Image) = dim(Domain))

Suitable Grade Level

Undergraduate - Linear Algebra Course