Math Problem Statement

do question 4 a-e

Determine probabilities P(Y=2), P(Z=2), P(X=2), P(Y=X), and P(X+Y=4) using the given joint PMF table.

Solution

Let's solve Question 4 (a-e) based on the provided PMF table.

Given Joint PMF Table for XX, YY, ZZ:

  • We use the joint probabilities from the table to calculate the required probabilities.

(a) P(Y=2)P(Y = 2):

To calculate P(Y=2)P(Y = 2), we sum all probabilities where Y=2Y = 2: P(Y=2)=P(X=1,Y=2,Z=1)+P(X=2,Y=2,Z=1)+P(X=3,Y=2,Z=1)+P(Y = 2) = P(X=1, Y=2, Z=1) + P(X=2, Y=2, Z=1) + P(X=3, Y=2, Z=1) + \cdots

From the table: P(Y=2)=(0.006+0.005+0.004)+(0.02+0.145+0.04)+(0.02+0.08+0.05)P(Y = 2) = (0.006 + 0.005 + 0.004) + (0.02 + 0.145 + 0.04) + (0.02 + 0.08 + 0.05) P(Y=2)=0.015+0.205+0.15=0.37P(Y = 2) = 0.015 + 0.205 + 0.15 = 0.37


(b) P(Z=2)P(Z = 2):

To calculate P(Z=2)P(Z = 2), sum all probabilities where Z=2Z = 2: P(Z=2)=P(X=1,Y=1,Z=2)+P(X=2,Y=1,Z=2)+P(Z = 2) = P(X=1, Y=1, Z=2) + P(X=2, Y=1, Z=2) + \cdots

From the table: P(Z=2)=(0.07+0.06+0.01)+(0.02+0.08+0.05)+(0.09+0.04+0.03)P(Z = 2) = (0.07 + 0.06 + 0.01) + (0.02 + 0.08 + 0.05) + (0.09 + 0.04 + 0.03) P(Z=2)=0.14+0.15+0.16=0.45P(Z = 2) = 0.14 + 0.15 + 0.16 = 0.45


(c) P(X=2)P(X = 2):

To calculate P(X=2)P(X = 2), sum all probabilities where X=2X = 2: P(X=2)=P(X=2,Y=1,Z=1)+P(X=2,Y=2,Z=1)+P(X=2,Y=3,Z=1)+P(X = 2) = P(X=2, Y=1, Z=1) + P(X=2, Y=2, Z=1) + P(X=2, Y=3, Z=1) + \cdots

From the table: P(X=2)=(0.002+0.005+0.008)+(0.06+0.08+0.04)+(0.01+0.145+0.06)P(X = 2) = (0.002 + 0.005 + 0.008) + (0.06 + 0.08 + 0.04) + (0.01 + 0.145 + 0.06) P(X=2)=0.015+0.18+0.215=0.41P(X = 2) = 0.015 + 0.18 + 0.215 = 0.41


(d) P(Y=X)P(Y = X):

Here, Y=XY = X means we only consider diagonal elements (X=1,Y=1),(X=2,Y=2),(X=3,Y=3)(X=1, Y=1), (X=2, Y=2), (X=3, Y=3) for all ZZ.

From the table: P(Y=X)=P(X=1,Y=1,Z=1)+P(X=2,Y=2,Z=1)+P(X=3,Y=3,Z=1)P(Y = X) = P(X=1, Y=1, Z=1) + P(X=2, Y=2, Z=1) + P(X=3, Y=3, Z=1) +P(X=1,Y=1,Z=2)+P(X=2,Y=2,Z=2)+P(X=3,Y=3,Z=2)+ P(X=1, Y=1, Z=2) + P(X=2, Y=2, Z=2) + P(X=3, Y=3, Z=2) +P(X=1,Y=1,Z=3)+P(X=2,Y=2,Z=3)+P(X=3,Y=3,Z=3)+ P(X=1, Y=1, Z=3) + P(X=2, Y=2, Z=3) + P(X=3, Y=3, Z=3)

P(Y=X)=(0.001+0.005+0.009)+(0.07+0.08+0.03)+(0.03+0.145+0.08)P(Y = X) = (0.001 + 0.005 + 0.009) + (0.07 + 0.08 + 0.03) + (0.03 + 0.145 + 0.08) P(Y=X)=0.015+0.18+0.255=0.45P(Y = X) = 0.015 + 0.18 + 0.255 = 0.45


(e) P(X+Y=4)P(X + Y = 4):

Here, X+Y=4X + Y = 4 means we consider:

  • (X=1,Y=3)(X=1, Y=3)
  • (X=2,Y=2)(X=2, Y=2)
  • (X=3,Y=1)(X=3, Y=1) for all ZZ.

From the table: P(X+Y=4)=P(X=1,Y=3,Z=1)+P(X=1,Y=3,Z=2)+P(X=1,Y=3,Z=3)P(X + Y = 4) = P(X=1, Y=3, Z=1) + P(X=1, Y=3, Z=2) + P(X=1, Y=3, Z=3) +P(X=2,Y=2,Z=1)+P(X=2,Y=2,Z=2)+P(X=2,Y=2,Z=3)+ P(X=2, Y=2, Z=1) + P(X=2, Y=2, Z=2) + P(X=2, Y=2, Z=3) +P(X=3,Y=1,Z=1)+P(X=3,Y=1,Z=2)+P(X=3,Y=1,Z=3)+ P(X=3, Y=1, Z=1) + P(X=3, Y=1, Z=2) + P(X=3, Y=1, Z=3)

P(X+Y=4)=(0.007+0.09+0.07)+(0.005+0.08+0.145)+(0.003+0.01+0.05)P(X + Y = 4) = (0.007 + 0.09 + 0.07) + (0.005 + 0.08 + 0.145) + (0.003 + 0.01 + 0.05) P(X+Y=4)=0.167+0.23+0.063=0.46P(X + Y = 4) = 0.167 + 0.23 + 0.063 = 0.46


Final Answers:

(a) P(Y=2)=0.37P(Y = 2) = 0.37
(b) P(Z=2)=0.45P(Z = 2) = 0.45
(c) P(X=2)=0.41P(X = 2) = 0.41
(d) P(Y=X)=0.45P(Y = X) = 0.45
(e) P(X+Y=4)=0.46P(X + Y = 4) = 0.46

Would you like me to explain any of these calculations in further detail?

Here are five related questions you might explore:

  1. How do you compute the marginal PMFs P(X)P(X), P(Y)P(Y), or P(Z)P(Z)?
  2. How can conditional probabilities, such as P(XY=2)P(X | Y=2), be calculated?
  3. How do the joint probabilities relate to the independence of XX, YY, and ZZ?
  4. What is the expected value of XX, YY, or ZZ?
  5. How do you calculate P(X+Y>4)P(X + Y > 4)?

Tip: Always verify that the sum of all joint probabilities equals 1, as this ensures the PMF is valid.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Mass Function (PMF)
Joint Probability
Marginal Probability
Summation of Probabilities

Formulas

P(Y=k) = Σ P(X=i, Y=k, Z=j) over all i, j
P(Z=l) = Σ P(X=i, Y=k, Z=l) over all i, k
P(X+Y=n) = Σ P(X=i, Y=j, Z=k) where i+j=n

Theorems

Law of Total Probability
Joint and Marginal Probability Relationships

Suitable Grade Level

Undergraduate (Introductory Probability and Statistics)