Let's solve Question 4 (a-e) based on the provided PMF table.
Given Joint PMF Table for X, Y, Z:
- We use the joint probabilities from the table to calculate the required probabilities.
(a) P(Y=2):
To calculate P(Y=2), we sum all probabilities where Y=2:
P(Y=2)=P(X=1,Y=2,Z=1)+P(X=2,Y=2,Z=1)+P(X=3,Y=2,Z=1)+⋯
From the table:
P(Y=2)=(0.006+0.005+0.004)+(0.02+0.145+0.04)+(0.02+0.08+0.05)
P(Y=2)=0.015+0.205+0.15=0.37
(b) P(Z=2):
To calculate P(Z=2), sum all probabilities where Z=2:
P(Z=2)=P(X=1,Y=1,Z=2)+P(X=2,Y=1,Z=2)+⋯
From the table:
P(Z=2)=(0.07+0.06+0.01)+(0.02+0.08+0.05)+(0.09+0.04+0.03)
P(Z=2)=0.14+0.15+0.16=0.45
(c) P(X=2):
To calculate P(X=2), sum all probabilities where X=2:
P(X=2)=P(X=2,Y=1,Z=1)+P(X=2,Y=2,Z=1)+P(X=2,Y=3,Z=1)+⋯
From the table:
P(X=2)=(0.002+0.005+0.008)+(0.06+0.08+0.04)+(0.01+0.145+0.06)
P(X=2)=0.015+0.18+0.215=0.41
(d) P(Y=X):
Here, Y=X means we only consider diagonal elements (X=1,Y=1),(X=2,Y=2),(X=3,Y=3) for all Z.
From the table:
P(Y=X)=P(X=1,Y=1,Z=1)+P(X=2,Y=2,Z=1)+P(X=3,Y=3,Z=1)
+P(X=1,Y=1,Z=2)+P(X=2,Y=2,Z=2)+P(X=3,Y=3,Z=2)
+P(X=1,Y=1,Z=3)+P(X=2,Y=2,Z=3)+P(X=3,Y=3,Z=3)
P(Y=X)=(0.001+0.005+0.009)+(0.07+0.08+0.03)+(0.03+0.145+0.08)
P(Y=X)=0.015+0.18+0.255=0.45
(e) P(X+Y=4):
Here, X+Y=4 means we consider:
- (X=1,Y=3)
- (X=2,Y=2)
- (X=3,Y=1) for all Z.
From the table:
P(X+Y=4)=P(X=1,Y=3,Z=1)+P(X=1,Y=3,Z=2)+P(X=1,Y=3,Z=3)
+P(X=2,Y=2,Z=1)+P(X=2,Y=2,Z=2)+P(X=2,Y=2,Z=3)
+P(X=3,Y=1,Z=1)+P(X=3,Y=1,Z=2)+P(X=3,Y=1,Z=3)
P(X+Y=4)=(0.007+0.09+0.07)+(0.005+0.08+0.145)+(0.003+0.01+0.05)
P(X+Y=4)=0.167+0.23+0.063=0.46
Final Answers:
(a) P(Y=2)=0.37
(b) P(Z=2)=0.45
(c) P(X=2)=0.41
(d) P(Y=X)=0.45
(e) P(X+Y=4)=0.46
Would you like me to explain any of these calculations in further detail?
Here are five related questions you might explore:
- How do you compute the marginal PMFs P(X), P(Y), or P(Z)?
- How can conditional probabilities, such as P(X∣Y=2), be calculated?
- How do the joint probabilities relate to the independence of X, Y, and Z?
- What is the expected value of X, Y, or Z?
- How do you calculate P(X+Y>4)?
Tip: Always verify that the sum of all joint probabilities equals 1, as this ensures the PMF is valid.