Math Problem Statement

Use iteration to find explicit formulas for the following recurrences. Assume T (1) = 1. i. T (n) = 3T n 3  + n, n = 3k ii. T (n) = 4T n 4  + n, n = 4k 3

Solution

To find the explicit formulas for the given recurrences using iteration, let's solve them step by step.

i. T(n)=3T(n3)+nT(n) = 3T\left(\frac{n}{3}\right) + n, with n=3kn = 3^k and T(1)=1T(1) = 1

Let's iterate the recurrence:

  1. First iteration: T(n)=3T(n3)+nT(n) = 3T\left(\frac{n}{3}\right) + n

  2. Second iteration: T(n3)=3T(n9)+n3T\left(\frac{n}{3}\right) = 3T\left(\frac{n}{9}\right) + \frac{n}{3} Substituting into the first equation: T(n)=3(3T(n9)+n3)+n=9T(n9)+3n+n=9T(n9)+4nT(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{n}{3}\right) + n = 9T\left(\frac{n}{9}\right) + 3n + n = 9T\left(\frac{n}{9}\right) + 4n

  3. Third iteration: T(n9)=3T(n27)+n9T\left(\frac{n}{9}\right) = 3T\left(\frac{n}{27}\right) + \frac{n}{9} Substituting into the previous expression: T(n)=9(3T(n27)+n9)+4n=27T(n27)+9n+4n=27T(n27)+13nT(n) = 9\left(3T\left(\frac{n}{27}\right) + \frac{n}{9}\right) + 4n = 27T\left(\frac{n}{27}\right) + 9n + 4n = 27T\left(\frac{n}{27}\right) + 13n

Continuing this pattern, we observe that after mm iterations:

T(n)=3mT(n3m)+n(i=0m13i)T(n) = 3^m T\left(\frac{n}{3^m}\right) + n \left(\sum_{i=0}^{m-1} 3^i\right)

Since n=3kn = 3^k and T(1)=1T(1) = 1, we have n3k=1\frac{n}{3^k} = 1 when m=km = k:

T(n)=3kT(1)+n(i=0k13i)T(n) = 3^k T(1) + n \left(\sum_{i=0}^{k-1} 3^i\right)

T(n)=3k1+n(3k12)T(n) = 3^k \cdot 1 + n \left(\frac{3^k - 1}{2}\right)

T(n)=3k+n(3k1)2T(n) = 3^k + \frac{n(3^k - 1)}{2}

Since n=3kn = 3^k, 3k=n3^k = n:

T(n)=n+n(n1)2=n2+n2T(n) = n + \frac{n(n - 1)}{2} = \frac{n^2 + n}{2}

Thus, the explicit formula is:

T(n)=n2+n2\boxed{T(n) = \frac{n^2 + n}{2}}

ii. T(n)=4T(n4)+nT(n) = 4T\left(\frac{n}{4}\right) + n, with n=4kn = 4^k and T(1)=1T(1) = 1

Let's iterate the recurrence:

  1. First iteration: T(n)=4T(n4)+nT(n) = 4T\left(\frac{n}{4}\right) + n

  2. Second iteration: T(n4)=4T(n16)+n4T\left(\frac{n}{4}\right) = 4T\left(\frac{n}{16}\right) + \frac{n}{4} Substituting into the first equation: T(n)=4(4T(n16)+n4)+n=16T(n16)+4n+n=16T(n16)+5nT(n) = 4\left(4T\left(\frac{n}{16}\right) + \frac{n}{4}\right) + n = 16T\left(\frac{n}{16}\right) + 4n + n = 16T\left(\frac{n}{16}\right) + 5n

  3. Third iteration: T(n16)=4T(n64)+n16T\left(\frac{n}{16}\right) = 4T\left(\frac{n}{64}\right) + \frac{n}{16} Substituting into the previous expression: T(n)=16(4T(n64)+n16)+5n=64T(n64)+16n+5n=64T(n64)+21nT(n) = 16\left(4T\left(\frac{n}{64}\right) + \frac{n}{16}\right) + 5n = 64T\left(\frac{n}{64}\right) + 16n + 5n = 64T\left(\frac{n}{64}\right) + 21n

Continuing this pattern, after mm iterations:

T(n)=4mT(n4m)+n(i=0m14i)T(n) = 4^m T\left(\frac{n}{4^m}\right) + n \left(\sum_{i=0}^{m-1} 4^i\right)

Since n=4kn = 4^k and T(1)=1T(1) = 1, we have n4k=1\frac{n}{4^k} = 1 when m=km = k:

T(n)=4kT(1)+n(i=0k14i)T(n) = 4^k T(1) + n \left(\sum_{i=0}^{k-1} 4^i\right)

T(n)=4k1+n(4k13)T(n) = 4^k \cdot 1 + n \left(\frac{4^k - 1}{3}\right)

T(n)=4k+n(4k1)3T(n) = 4^k + \frac{n(4^k - 1)}{3}

Since n=4kn = 4^k, 4k=n4^k = n:

T(n)=n+n(n1)3=n2+2n3T(n) = n + \frac{n(n - 1)}{3} = \frac{n^2 + 2n}{3}

Thus, the explicit formula is:

T(n)=n2+2n3\boxed{T(n) = \frac{n^2 + 2n}{3}}

Would you like more details on any of the steps? Here are some related questions you might find interesting:

  1. How do these formulas relate to the Master Theorem for divide-and-conquer recurrences?
  2. What are other common methods for solving recurrence relations?
  3. How does the choice of base (3 in the first problem, 4 in the second) affect the solution?
  4. What would the explicit formulas be for different initial conditions (e.g., T(1)=2T(1) = 2)?
  5. How do these problems illustrate the growth rates of recursive functions?

Tip: Understanding the iterative method for solving recurrences is crucial for analyzing the time complexity of algorithms, especially in divide-and-conquer approaches.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Recurrence Relations
Iterative Methods
Divide and Conquer Algorithms

Formulas

Explicit formulas for recurrence relations

Theorems

Master Theorem (for comparison)

Suitable Grade Level

Advanced Undergraduate