Math Problem Statement
Find the inverse of a using gauss elimination method
Solution
To find the inverse of matrix using Gauss-Jordan elimination, we proceed as follows:
We augment the matrix with the identity matrix and perform row operations to convert into the identity matrix. The resulting augmented part will be the inverse of .
The augmented matrix is:
2 & 0 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 3 & 2 & 2 & 0 & 0 & 1 \end{array}\right]$$ We perform row operations to transform the left side into the identity matrix. ### Step-by-Step Procedure: 1. **Row 1: Make the pivot in the first column a 1.** $$R_1 \rightarrow \frac{1}{2} R_1 = \left[1 \, 0 \, 0 \mid \frac{1}{2} \, 0 \, 0\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 3 & 2 & 2 & 0 & 0 & 1 \end{array}\right]$$ 2. **Row 2: Eliminate the first element in row 2.** Subtract 2 times row 1 from row 2: $$R_2 \rightarrow R_2 - 2R_1 = \left[0 \, 1 \, 0 \mid -1 \, 1 \, 0\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 3 & 2 & 2 & 0 & 0 & 1 \end{array}\right]$$ 3. **Row 3: Eliminate the first element in row 3.** Subtract 3 times row 1 from row 3: $$R_3 \rightarrow R_3 - 3R_1 = \left[0 \, 2 \, 2 \mid -\frac{3}{2} \, 0 \, 1\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 2 & 2 & -\frac{3}{2} & 0 & 1 \end{array}\right]$$ 4. **Row 3: Make the pivot in the second column a 1.** Divide row 3 by 2: $$R_3 \rightarrow \frac{1}{2}R_3 = \left[0 \, 1 \, 1 \mid -\frac{3}{4} \, 0 \, \frac{1}{2}\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & -\frac{3}{4} & 0 & \frac{1}{2} \end{array}\right]$$ 5. **Row 2: Eliminate the second element in row 2.** Subtract row 3 from row 2: $$R_2 \rightarrow R_2 - R_3 = \left[0 \, 0 \, -1 \mid -\frac{1}{4} \, 1 \, -\frac{1}{2}\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -1 & -\frac{1}{4} & 1 & -\frac{1}{2} \\ 0 & 1 & 1 & -\frac{3}{4} & 0 & \frac{1}{2} \end{array}\right]$$ 6. **Row 2: Make the pivot in the third column a 1.** Multiply row 2 by -1: $$R_2 \rightarrow -1R_2 = \left[0 \, 0 \, 1 \mid \frac{1}{4} \, -1 \, \frac{1}{2}\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{4} & -1 & \frac{1}{2} \\ 0 & 1 & 1 & -\frac{3}{4} & 0 & \frac{1}{2} \end{array}\right]$$ 7. **Row 3: Eliminate the third element in row 3.** Subtract row 2 from row 3: $$R_3 \rightarrow R_3 - R_2 = \left[0 \, 1 \, 0 \mid -1 \, 1 \, 0\right]$$ $$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{4} & -1 & \frac{1}{2} \\ 0 & 1 & 0 & -1 & 1 & 0 \end{array}\right]$$ 8. **Row 2: Eliminate the third element in row 2.** Add $$\frac{1}{4}$$ times row 3 to row 2: $$R_2 \rightarrow R_2 + \frac{1}{4} R_3 = \left[1 \, 0 \, 0 \mid \frac{3}{2} \, -2 \, 1\right]$$ After all these operations, the inverse matrix of $$A$$ is: \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ \frac{3}{4} & 0 & 1 \end{bmatrix}Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Algebra
Gauss-Jordan Elimination
Formulas
Gauss-Jordan Elimination for Matrix Inversion
Elementary Row Operations
Theorems
Inverse of a Matrix
Suitable Grade Level
Undergraduate
Related Recommendation
Find the Inverse of Matrix A Using Gauss-Jordan Method
Find the Inverse of a 3x3 Matrix Using Gauss-Jordan Method
Inverse of Matrix A = [2 1 1] [3 2 3] [1 4 9] using Gauss-Jordan Method
Find the Inverse of a Matrix Using Gauss-Jordan Method - Matrix A
Inverse of a Matrix Using Gauss-Jordan Elimination - Step-by-Step Solution