Math Problem Statement

সমাধান করে দাও

f: R → R এবং g: R → R দুটি ফাংশন দেওয়া আছে যেখানে f(x) = 3x + 3 এবং g(x) = (x - 3) / 3। (ক) g^-1(-3) এর মান নির্ণয় কর। (খ) f(x) সার্বিক ক্রমহ্রাসশীল বা ক্রমবর্ধমান কিনা তা নির্ণয় কর। (গ) দেখাও যে, g = f^-1।

Solution

To solve the problem given in the image, let’s go through each part systematically.

  1. Problem Statement Overview:
    • Two functions are defined:
      • f(x)=3x+3f(x) = 3x + 3
      • g(x)=x33g(x) = \frac{x - 3}{3}
    • We are tasked with solving several questions based on these functions.

Step-by-Step Solutions

(ক) g1(3)g^{-1}(-3) এর মান নির্ণয় কর

To find g1(3)g^{-1}(-3), we need to determine the inverse of g(x)g(x), then plug in 3-3 to find the value.

  1. Find g1(x)g^{-1}(x):

    • Start with y=g(x)=x33y = g(x) = \frac{x - 3}{3}.
    • Rearrange to solve for xx in terms of yy: y=x33x3=3yx=3y+3y = \frac{x - 3}{3} \Rightarrow x - 3 = 3y \Rightarrow x = 3y + 3
    • Thus, the inverse function is g1(x)=3x+3g^{-1}(x) = 3x + 3.
  2. Calculate g1(3)g^{-1}(-3):

    • Substitute 3-3 into g1(x)g^{-1}(x): g1(3)=3(3)+3=9+3=6g^{-1}(-3) = 3(-3) + 3 = -9 + 3 = -6
    • Therefore, g1(3)=6g^{-1}(-3) = -6.

(খ) f(x)f(x) সার্বিক ক্রমহ্রাসশীল বা ক্রমবর্ধমান কিনা তা নির্ণয় কর

To determine if f(x)=3x+3f(x) = 3x + 3 is increasing or decreasing, we examine its derivative:

  1. Find f(x)f'(x): f(x)=3x+3f(x)=3f(x) = 3x + 3 \Rightarrow f'(x) = 3
  2. Since f(x)=3>0f'(x) = 3 > 0, f(x)f(x) is an increasing function on R\mathbb{R}.

(গ) দেখাও যে, g=f1g = f^{-1}

To show that gg is the inverse of ff, we need to confirm that f(g(x))=xf(g(x)) = x and g(f(x))=xg(f(x)) = x:

  1. Calculate f(g(x))f(g(x)):
    • Substitute g(x)=x33g(x) = \frac{x - 3}{3} into ff: f(g(x))=f(x33)=3x33+3=(x3)+3=xf(g(x)) = f\left(\frac{x - 3}{3}\right) = 3 \cdot \frac{x - 3}{3} + 3 = (x - 3) + 3 = x
  2. Calculate g(f(x))g(f(x)):
    • Substitute f(x)=3x+3f(x) = 3x + 3 into gg: g(f(x))=g(3x+3)=3x+333=3x3=xg(f(x)) = g(3x + 3) = \frac{3x + 3 - 3}{3} = \frac{3x}{3} = x
  3. Since both f(g(x))=xf(g(x)) = x and g(f(x))=xg(f(x)) = x, we conclude that g=f1g = f^{-1}.

Final Answers

  1. (ক) g1(3)=6g^{-1}(-3) = -6
  2. (খ) f(x)f(x) is an increasing function.
  3. (গ) It is shown that g=f1g = f^{-1}.

Would you like further details on any part of the solution?


Follow-Up Questions:

  1. How do we determine if a function is increasing or decreasing using derivatives?
  2. What are the steps to find the inverse of a function?
  3. How can we verify that two functions are inverses of each other?
  4. Why is the derivative of a linear function like f(x)=3x+3f(x) = 3x + 3 constant?
  5. What are some practical applications of finding inverse functions?

Tip: To verify if two functions are inverses, always check that applying one function after the other returns the original input value.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Functions
Monotonicity
Function Composition

Formulas

Inverse function formula
Derivative for monotonicity

Theorems

Function Inverse Theorem
Monotonicity Criterion

Suitable Grade Level

Grades 10-12