Math Problem Statement
সমাধান করে দাও
f: R → R এবং g: R → R দুটি ফাংশন দেওয়া আছে যেখানে f(x) = 3x + 3 এবং g(x) = (x - 3) / 3। (ক) g^-1(-3) এর মান নির্ণয় কর। (খ) f(x) সার্বিক ক্রমহ্রাসশীল বা ক্রমবর্ধমান কিনা তা নির্ণয় কর। (গ) দেখাও যে, g = f^-1।
Solution
To solve the problem given in the image, let’s go through each part systematically.
- Problem Statement Overview:
- Two functions are defined:
- We are tasked with solving several questions based on these functions.
- Two functions are defined:
Step-by-Step Solutions
(ক) এর মান নির্ণয় কর
To find , we need to determine the inverse of , then plug in to find the value.
-
Find :
- Start with .
- Rearrange to solve for in terms of :
- Thus, the inverse function is .
-
Calculate :
- Substitute into :
- Therefore, .
(খ) সার্বিক ক্রমহ্রাসশীল বা ক্রমবর্ধমান কিনা তা নির্ণয় কর
To determine if is increasing or decreasing, we examine its derivative:
- Find :
- Since , is an increasing function on .
(গ) দেখাও যে,
To show that is the inverse of , we need to confirm that and :
- Calculate :
- Substitute into :
- Calculate :
- Substitute into :
- Since both and , we conclude that .
Final Answers
- (ক)
- (খ) is an increasing function.
- (গ) It is shown that .
Would you like further details on any part of the solution?
Follow-Up Questions:
- How do we determine if a function is increasing or decreasing using derivatives?
- What are the steps to find the inverse of a function?
- How can we verify that two functions are inverses of each other?
- Why is the derivative of a linear function like constant?
- What are some practical applications of finding inverse functions?
Tip: To verify if two functions are inverses, always check that applying one function after the other returns the original input value.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Inverse Functions
Monotonicity
Function Composition
Formulas
Inverse function formula
Derivative for monotonicity
Theorems
Function Inverse Theorem
Monotonicity Criterion
Suitable Grade Level
Grades 10-12